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ABSTRACT

Background states of an EEG signal describe the distinctive varia-
tions in the amplitude of the signal with respect to time. Background
state detection in EEG is used to help estimate the brain growth
progress in infants. Currently, background detection is mostly done
manually, which is highly subjective. This paper proposes a way
to automatically detect background states for preterm infants. The
distribution of the amplitude vector in a 10-minute window of 2-
channel preterm neonatal EEG signal is analysed, and the mean and
standard deviations of the amplitudes in log-space are used as fea-
tures in a linear discriminant analysis based classifier. The results
are compared with existing methods of background detection. The
algorithm performs well compared with the visual classification. It
also shows less sensitivity to local variations the existing algorithm
are suffering from.

Index Terms— Biomedical signal analysis, Pattern classifica-
tion, Electroencephalography, Medical expert systems

1. INTRODUCTION

Electroencephalogram (EEG) is the weak electrical signal registered
by putting electrodes on a patient’s scalp. The resulting signal is
a summation of the electrical signals emitted from neurons in the
brain. Although the origin of this phenomenon is not entirely under-
stood, it remains one of the most unintrusive ways to continuously
monitor neurological activity. It is therefore particularly suited for
vulnerable patients such as preterm infants, where MRI or CT scans
are not always a viable option.

In terms of preterm infant monitoring, background state classifi-
cation is an important aspect of EEG analysis. The backgound state
of an EEG signal refers to the general behaviour of the signal. Back-
ground states decribe the variations in the amplitude of a signal with
repect to time. Figure 1 shows examples of EEG segments which
are classified as “continuous” and “discontinuous”. The background
state is used to estimate the growing progress of the brain, as well as
determination of sleep states [1].

The most common ways to determine the background states of a
recording are by visually scanning the EEG recording, or by looking
at the amplitude-integrated EEG (aEEG) [2, 3], and using the gen-
eral guidelines shown in figure 2 to determine the background states.
Currently the definitions of “continuous” and “discontinuous” EEG
are qualitative. Some guidelines have been established to estimate
the maximun and minimum points of the aEEG, which are in turn
used to determine the background state. However, they are estimates
and are largely subjective. The algorithm presented by Navakatikyan
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Fig. 1. Examples of 60 seconds of EEG that are classified as discon-
tinuous (top graph) and continuous (bottom graph).

et al [4] trys to improve the objectivity of the guidelines by using
rEEG [5] and sets a standard to determine the maximum and mini-
mum amplitudes using the rEEG. This gives a more objective way to
classify the signal but rEEG, like aEEG, is still very sensitive to lo-
cal signal variation, and can also be prone to the interference of noise
such as muscle artifacts. The algorithm presented in [4] focuses on
term infants, who have more developed brains and generally clearer
distinctions between continuous and discontinuous signals. This pa-
per presents a system targeted at preterm infants, and analyses and
classifies 2-channels EEG signal recorded using the BRM bedside
monitoring developed by BrainZ Instruments [6]. The proposed sys-
tem uses the raw EEG instead of the aEEG or rEEG to determine the
EEG background states. The background states of an EEG signal are
estimated as being either continuous or discontinuous.

The paper is structured as follows. Section 2 gives an overview
of the system. Section 3 looks at the segmentation of the signal to
produce pseudo-stationary segments. Section 4 looks at the classifi-
cation stage of the system. The results are presented and discussed
in section 5.

Fig. 2. Guidelines for background state classification by aEEG. The
two horizontonal lines indicate 5μV and 10μV . From left to right:
(a) Continuous normal voltage; (b) Discontinuous normal voltage;
(c) Burst Suppression; (d) Continuous low voltage. The estimated
maximum and minimum of the aEEG is compared with the 5μV and
10μV thresholds as classification criteria [3]. Note the conventional
semi-log scale (i.e. linear from 0 to 10 μV and in log scale from 10
- 100 μV

4211-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008



2. SYSTEM OVERVIEW

The proposed method of background classification involves using
the amplitude distributions of EEG signals in 10-minute windows
to determine whether the signal is continuous or discontinuous in
nature. Because of the non-stationary nature of EEG signals, the
recording is first segmented into pseudo-stationary segments. The
averages of the absolute voltage of the segments are recorded over
the 10-minute windows. The distributions of these readings can be
described by the log-normal distribution. The estimated means and
standard deviations of the distributions are used as features in a clas-
sifier to classify the 10-minute window as continuous or discontinu-
ous. The 10-minute windows have a 90% overlap for proper resolu-
tion.

3. SIGNAL SEGMENTATION

To describe the amplitude variations and distribution of an EEG
recording (which defines the continuity of the recording), the EEG
signal was first divided into pseudo-stationary segments. This was
done so that one value could be extracted from each segment to ac-
curately represent the amplitude for the duration of the segment.
Earlier evaluation showed that generalized likelihood ratio (GLR)
is suited for the task of segmenting neonatal EEG [7].

GRL is a method for segmentation of time series signals pro-
posed by Appel and Brandt [8, 9].The idea of GLR is to analyse
the predictive error of the signal using an autoregressive model, and
assign segment boundaries at the point of the signal where, if no seg-
ment boundary is present, a higher predictive error is obtained. The
segmentation criteria, d(n), is defined in (1), where n is the start of
the test window, L is the length of the test window, and e(n) is the
predictive error at time n.
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A segment boundary is assigned at n if d(n) exceed a prede-
fined threshold. Once a segment boundary is detected, the algorithm
repeats starting at n + 1. Figure 3 shows a typical segmentation
result.

Fig. 3. Example of segmentation for 30 seconds of EEG signal using
the GLR algorithm.

After the signal has been segmented, the mean absolute voltage
of each segment is calculated. This value is used to represent the
amplitude of the signal for the duration of the segment. In order to
take into account the length of the segment (which is not a constant),
instead of storing the amplitude readings in a vector which contains
one value for each segment, the value is repeated for each sample of
the signal, such that the resulting vector has the same length as the

EEG signal data. This amplitude vector is then used for the classfi-
cation stage.

4. PATTERN CLASSIFICATION

Because the continuity of the signal is defined as the variation in
amplitude, the window used for the classification process needs to
take into account a long enough period of data for such classification
to be valid. A 10-minute sliding window is used for this system as a
compromise between resolution and the amount of information taken
into account. The amplitude value vector as described in section 3 is
used for the classification stage. 10 minutes of the amplitude vector
are processed and classified to produce one value that indicates the
continuity of the EEG signal during the time window. The sliding
window moves 1 minute for each iteration to give one value for every
minutes of the EEG signal (except for the first and last 5 minutes).

4.1. Feature Extraction

Figure 4 shows a histogram of the values in the amplitude vector for
one 10-minute window. The distribution can be modelled using a
log-normal distribution, where the log value of the data is assumed
to follow the normal distribution. The estimated mean and standard
deviation of the data in log space are calculated as follows:

μ̂ =

∑N

i=1
log xi

N
(2)

σ̂ =

√∑N

i=1
(log xi − μ̂)2

N
(3)

Where x is the windowed amplitude vector, N is the number of val-
ues in x, and μ̂ and σ̂ are the estimated mean and standard deviation
of x in the log space. The latter two values are used to classify the
10 minute window to determine the continuity of the signal. The
mean and and standard deviation of the distribution are used since
the background states of EEG are defined by the variations of the
signal, and the parameters of the distribution would be best to de-
scribe this variation.
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Fig. 4. Histogram showing the distribution of the amplitude vector.
The curve represents the fitted log-normal distribution.
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4.2. Linear Discriminant Analysis

Segments of EEG, 10 minutes in length, and with known continuity
categories (continuous or discontinuous), are used as training data.
Features are extracted from the training set as described in section
4.1, and a classifier based on linear discriminant analysis is devel-
oped. Figure 5 shows the distribution of the features in the training
set. LDA looks at the data points in the two classes to determine a
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Fig. 5. Distribution of the μ̂ and σ̂ in the training set.

linear mapping that increases the between-class variance and min-
imises the within-class variance [10]. Where the within class vari-
ance is defined as:

Sw =

C∑
j=1

pj × (covj) (4)

where C is the number of classes, covj is the covariance of class j,
and pj is the priori probability of class j. The between-class variance
is defined as:

Sb =
C∑

j=1

(μj − μ)× (μj − μ)T (5)

where μ is the global mean and μj is mean of the class j. The
projection matrix is defined as the eigenvectors of S−1

w × Sb. The
transformation is optimised to ensure the ratio det|Sb|/det|Sw | is
maximised. The transformed data is then used for classfication pur-
poses, using the Euclidean distance between the testing point and the
center of the data in each class of the testing data set.

Both crisp and soft classifications were performed for compara-
tive purposes. The soft classification version was adjusted in such a
way that the training data gave a probablity of 1 in the class which
the sample was labelled with.

5. TESTING AND RESULTS

5.1. Training and Testing Data

From a database of preterm EEG recordings, 10 minute segments
of EEG were selected after exmaining the aEEG and raw EEG data
to ensure the segments were good representations of continuous or

discontinuous signals. 25 segments were selected for each state as
the training data.

From the same database, 60 recordings, approximately 2 hours
in length, were selected. Selections were based on the quality of
the recording, and signals without seizures or significant mechanical
artifacts were selected as testing signals.

5.2. Testing procedure

The EEG recordings from the testing data set were processed using
the algorithm described in this paper, and the results were visually
compared with the aEEG and an exisiting algorithm for term infant
background detection. The first and last 5 minutes of each recording
were not classified. No attempt was made to reject artifacts of any
nature. Both the crisp and soft classifications were graphed against
the background state detected using algorithm described in [4] and
the aEEG signal, the latter being an established way for clinicians to
determine the background continuity.

5.3. Results and Discussion

Figure 6 shows the proposed and the rEEG [4] classfication results.
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Fig. 6. Classification results as compared with rEEG based algo-
rithm.

Because the system does not rely on aEEG, which is very sensi-
tive to artifacts such as muscle noise, the background states as clas-
sified by the system are a lot more stable than the existing solution.
The 10-minute window used for the feature extraction stage ensures
the features extracted from the window (i.e. μ̂ and σ̂) take into ac-
count a long enough period of the EEG to determine the background
state. This means the resulting classification system gives states that
are more stable and less prone to noise interference and less sensitive
to local variation of the signal, as shown in figure 6. The fact that the
proposed classifier was trained using preterm data also increases the
accuracy to make it better suited for preterm infants.

One problem with the background state detection is the fact that
the changes between one state and another do not occur instantly
but rather, from the aEEG graph, gradually change from one state
to another. Using the soft classification, each window is classified
with a probability of belonging to the two classes. The soft label can
be easily converted to crisp labelling, while giving more infomation
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about the background state of the EEG. The soft labelling can also
assist future work in EEG analysis by defining the area of signal
where no state changes occur.

Currently the system only distinguishes between continuous and
discontinuous signals. Future work will include extending the clas-
sification system to includemore states such as burst suppression,
continuous low voltage, and flat-lining. A score of continuity can
also be developed to improve the soft-labelling.

6. CONCLUSIONS

A technique for background state detection was developed for preterm
infant 2-channel EEG signal. The technique uses the distribution of
the mean average amplitude of pseudo-stationary segments to de-
termine the background state. Both crisp and soft labelling can be
used, to compensate for the gradual change of background states.
The proposed classifier performs well when compared with aEEG
and is more robust against local signal variations.

Tests using actual preterm infant 2-channel EEG recordings show
that this method of classification helps eliminating the problems seen
in classifiers that use aEEG, which is sensitive to noise such as mus-
cle artifacts and local variations. Further work is planned to include
more background states and improve the soft labelling ability of the
algorithm.
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