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ABSTRACT

Spatial filters are useful in discriminating different classes

of electroencephalogram (EEG) signals such as those cor-

responding to motor activities. In the case of discriminat-

ing two classes of signals, EEG signals are projected onto a

space where one class of signals is maximally scattered and

the other is minimally scattered. This paper finds a minimal

number of electrodes that can achieve the discrimination. Ap-

plying many electrodes is tedious and time-consuming. To re-

duce the number of electrodes, we propose inducing sparsity

in the spatial filter. We reformulate the optimization problem

in Common Spatial Patterns by introducing an �1-norm reg-

ularization term. Experimental results on five subjects show

that the proposed method significantly reduces the number of

electrodes while generating features with good discriminatory

information. The number of electrodes on average, is reduced

to 11% (of the 118 electrodes) while the average drop in the

classification accuracy is only 3.8%.

Index Terms— Electroencephalogram, Brain-Computer

Interface, Common Spatial Patterns, Optimization, Regular-

ization Term

1. INTRODUCTION

EEG signals, recorded using a set of electrodes placed over

the scalp, can be used for discriminating different mental tasks.

Different signals recorded at different scalp sites, however,

do not provide the same amount of discriminatory informa-

tion [1]. By associating weights wi to the signals obtained

from different electrodes prior to their processing, we essen-

tially perform spatial filtering and can thereby improve the

discrimination task.

Common Spatial Patterns (CSP) is a method commonly

used to find spatial filters for classification of multichannel

EEG signals. After the CSP algorithm’s first use in extract-

ing abnormal components from clinical EEG [2], it has been

widely used in brain-computer interface (BCI) research to ex-

tract features from EEG signals. Ramoser et al. [3] demon-

strated that spatial filters for multichannel EEG signals, which

are derived using CSP, can effectively extract discriminatory

information from two classes of EEG signals, namely the left

and right hand motor imageries. As an extension, Dornhege et
al. [4] proposed the CSSSP algorithm, which allows the si-

multaneous optimization of an FIR filter and a spatial filter

for the automatic selection of the subject-specific frequency

band, which the CSP operates on.

The CSP algorithm finds the directions where the EEG

signals should be projected onto so that the differences be-

tween any two classes of EEG signals are maximized (i.e. the

variance of one class is minimized while at the same time, the

variance of the other class is maximized) [1]. The directions

are given by a weight matrix whose rows give the weights of

the EEG channels. Useful features can be extracted from the

projected EEG signals and then used for classification.

The weights of the spatial filters generated from both the

CSP and CSSSP algorithms are dense (not sparse), thus a

larger number of electrodes is needed during signal acquisi-

tion. For practical applications such as BCI’s, applying many

electrodes is undesirable since the preparations prior to record-

ing the signals can be time-consuming and troublesome. To

reduce the number of channels used in BCIs, Wang et al. [5]

proposed the use of weight vectors that are obtained from

CSP. Four optimal channels were selected using the large co-

efficients of the CSP weight vectors. Two of these were based

on the neurological phenomena of event-related desynchro-

nization (ERD) and the readiness potential respectively. How-

ever, by eliminating other channels, the remaining signals can

no longer be projected onto the direction that best discrimi-

nates the two classes of EEG signals (even though other fea-

ture extraction methods can be used for that purpose), the per-

formance will not be optimal. Thus, in this paper, we seek to

determine a minimal set of EEG channels (i.e., the smallest

number of electrodes) that can be used to discriminate be-

tween two classes of EEG signals using spatial filters. The

use of a smaller number of electrodes will deteriorate the per-

formance achieved when all EEG channels are used. Thus,

the loss in the performance due to using a smaller number of

electrodes should also be minimized. In order to achieve this,

we modify the CSP algorithm by introducing an �1-norm reg-

ularization term to encourage sparsity in the weight vector of

the spatial filter, w.
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2. METHODOLOGY

2.1. Data Description

The EEG data used in this study consisted of two classes:

right hand and right foot motor imageries. They were pro-

vided by Fraunhofer FIRST (Intelligent Data Analysis Group)

and Campus Benjamin Franklin of the Charité - University

Medicine Berlin (Neurophysics Group) [6]. The EEG sig-

nals were recorded from five subjects using 118 electrodes per

subject. The extended International 10-20 system at a sam-

pling rate of 1 kHz was employed. During each experiment,

the subject was given visual cues that indicated for 3.5s which

of the three motor imageries should be performed: left hand,

right hand and right foot. The resting interval between two

trials was randomized from 1.75 to 2.25 seconds. Only EEG

trials for right hand and right foot were provided. Each class

of EEG signals consists of 140 trials.

2.2. Data Preprocessing

We used EEG data that were downsampled to 100 Hz. The

data were then band-pass filtered to the 8–35 Hz frequency

band. This band encompasses the Mu and Beta rhythms which

have been reported to desynchronize during motor imagery [7].

These neurological phenomena have been used successfully

in BCI systems to classify EEG signals [1, 3, 5].

2.3. Problem Formulation

The data consist of Ne = 118 EEG channels. There are two

classes of EEG signals: Class 1 (right hand) and Class 2 (right

foot), with each class containing M trials. We seek to find a

spatial filter or weight vector such that the signals can be pro-

jected onto a 1-dimensional space where one class of signals

is maximally scattered and the other is minimally scattered.

High variance of the signals indicates strong rhythms whereas

low variance indicates attenuated rhythms [1].

For example, during a right hand imagined movement,

ERD occurs and the motor rhythms are attenuated. Hence, we

can find a spatial filter such that the EEG signals correspond-

ing to a right hand motor imagery has minimal variance. This

can be done by solving an optimization problem. The cri-

terion or the cost function used in this optimization problem

is the variance of the projected Class 1 signals. It is mini-

mized while keeping the sum of the variances of both signal

classes fixed [1]. A sparse solution of the weight vector is de-

sired. (Note: During a right foot movement, ERD also occurs

and we can then find a spatial filter such that the EEG sig-

nals corresponding to a right foot motor imagery has minimal

variance. We can achieve this by maximizing the same cost

function mentioned above.)

Let S = {S1, S2, . . . , S2M} where Si ∈ R
Ne×N denotes

the filtered i-th trial EEG signal and N the number of samples

in the signal (350 in this study). The optimization problem is

expressed as:

minimize
w

∑

i∈C1
var(wT Si)

subject to

2M∑

i=1

var(wT Si) = 1

‖w‖0 ≡
Ne∑

i=1

|wi|0 ≤ k

(1)

where C1 represents all Class 1 EEG trials and w ∈ R
Ne is

the unknown weight vector of the spatial filter.

With only the first constraint in (1), the optimization prob-

lem reduces to the original CSP [1]. The second constraint

was introduced in this study to minimize the number of elec-

trodes (less than a positive integer, k). ‖w‖0 (�0-norm of w)

is a pseudo-norm giving the number of non-zero elements in

the vector with

|wi|0 =
{

0 wi = 0
1 otherwise

We can express the cost function in (1) using the definition

of variance, i.e.,

var(wT Si) = wT E{(Si − E{Si})(Si − E{Si})T }w
= wT Σiw

where Σ1 and Σ2 are the mean covariance matrices for the

signals belonging to sets C1 and C2 respectively. Solving a

problem with the �0-norm is combinatorial in nature and com-

putationally prohibitive to solve for large problems. Thus,

the �0-norm is replaced by an �1-norm (‖w‖1 ≡
∑Ne

i=1 |wi|),
which also promotes sparsity [8]. The formulation of the pro-

posed sparse CSP (SCSP) problem can then be rewritten as

minimize
w

wT Σ1w + ρ‖w‖1

subject to wT (Σ1 + Σ2)w = 1
(2)

where ρ > 0 is an appropriate regularization parameter that

controls the sparsity of the solution. When ρ = 0, the solution

is essentially the same as the one obtained using CSP.

Now, letting w = w+ − w− where w+ = max(w, 0)
and w− = max(−w, 0), we can express (2) as a Quadrati-

cally Constrained Quadratic Programming (QCQP) problem

expressed by

minimize
w̃

w̃T DΣ1D
T w̃ + ρcT w̃

subject to w̃T D(Σ1 + Σ2)DT w̃ = 1
w̃ ≥ 0

(3)

where w̃, c and D are defined as:-

w̃ =
(

w+

w−

)
; c =

(
1
1

)
; D =

(
I
−I

)
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This is a non-convex programming problem because of

the quadratic equality constraint. It can be solved using sev-

eral methods such as sequential quadratic programming (SQP)

and augmented Lagrangian methods. The QCQP problem (3)

was solved using the software package NPSOL, available in

TOMLAB (http://tomopt.com/tomlab/). The software uses

SQP to solve nonlinear programming problems.

For the optimization of (3), the cost function’s gradient

and Hessian are required. These are given by 2DΣ1D
T w̃+ρc

and 2DΣ1D
T respectively. In addition, w needs to be appro-

priately initialized in the iterative optimization algorithm. In

this study, the starting point used is a feasible point, which is

the optimal value obtained from the CSP algorithm (ρ = 0).

Furthermore, ρ that controls the sparsity of the solution (w)

has to be appropriately chosen. It is varied from 0.0 to 1.0. It

is subject specific and is chosen manually in this study based

on the number of electrodes reduced and the classification ac-

curacy achieved.

2.4. Feature Extraction and Classification

Two spatial filters were obtained by minimizing and maxi-

mizing the cost function in (3). Minimizing the variance of

Class 1 reflects the neurological phenomenon of event-related

desynchronization (ERD) of the motor rhythms whereas max-

imizing the variance of Class 1 reflects the synchronization

of the motor rhythm [1]. From the preliminary results, the

spatial filter obtained by minimizing the variance of Class 1

yielded a good discriminating feature. However, the second

spatial filter obtained by maximizing the variance of Class 1

did not give good discriminating features for any of the sub-

jects. Therefore, only the first spatial filter is used in extract-

ing features from the data.

The spatial filter is used to project the signals and the vari-

ance of the projected signals is the only feature used in the

classification. Linear Discriminant Analysis (LDA) is used

for classification. The number of non-zero elements in the

weight vector of the spatial filter and the averaged 10 × 10
fold cross-validation classification accuracy are used as per-

formance metrics. Note that no artifact rejection algorithm

was used in this study.

3. EXPERIMENTAL RESULTS

In this study, the regularization parameter ρ is selected manu-

ally. As ρ increases, the solution becomes more sparse. Fig. 1

shows the values of the elements of w when CSP and our pro-

posed SCSP were used in estimating the weight vector. The

proposed SCSP successfully produced a sparse weight vector

(with only 7 non-zero elements) when ρ = 0.47 was used.

However, there is a trade-off between ρ and the classification

accuracy. Therefore, ρ has to be chosen carefully to produce

reasonable results (acceptable accuracy with a minimal set of

electrodes selected). This varies between subjects. For ex-

ample, in subject aw, with 0.0 < ρ < 0.3, the classification

accuracy obtained lies in the range of 80% to 89%. Using

ρ = 0.32, 13 out of 118 electrodes are selected with an accu-

racy of approximately 84.4%.
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Fig. 1. Weight vector, w obtained using: (a) CSP; (b) the

proposed SCSP when ρ = 0.47.

Table 1 presents the number of non-zero elements and

the averaged 10× 10 cross-validation classification accuracy

achieved using three different methods in feature extraction:

CSP, the proposed SCSP and CSPv. CSPv uses CSP to se-

lect two optimal channels (the two largest coefficients in the

weight vector) as suggested by [5]. The features used are

the variance of the EEG signals corresponding to the optimal

channels. For CSP and the proposed SCSP, only one feature

is used in the classification.

Table 1. Performance comparison of CSP, our proposed

SCSP and CSPv. (Sbj: Subject; Ave: Average.)

Sbj # non-zero Classification
elements of w (ρ) accuracy (%)

CSP SCSP CSPv CSP SCSP CSPv

aa 118 17 (0.02) 2 58.6 57.5 51.0

av 118 5 (0.44) 2 52.5 54.4 52.4

al 118 9 (0.40) 2 92.1 86.9 82.5

aw 118 13 (0.32) 2 91.8 84.4 66.1

ay 118 20 (0.18) 2 91.4 84.3 71.3

Ave 118 13 2 77.3 73.5 64.7

CSP and the proposed SCSP successfully extracted fea-

tures from the EEG signals except for subject aa and av. CSP

yields higher classification accuracy but it requires the use

of all 118 electrodes in obtaining the features. On the other

hand, the proposed SCSP requires significantly fewer elec-

trodes (ranging from 5 to 20) even though the classification

accuracy on average drops from 77.3% to 73.5%, i.e., by 3.8%

only. Applying many electrodes in practical BCI applications

is undesirable because it is time-consuming and troublesome.

Using fewer electrodes speeds up the preparation process and

benefits both the operator and the user.

The accuracy of the proposed SCSP is higher than CSPv

as only two electrodes were used in CSPv. Even if the number

of optimal electrodes were increased to, for example, 13 in
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subject aw, the accuracy obtained was 71.4%, which is still

less than that of the proposed SCSP (84.4%). This shows that

all projected signals provide better discriminating features.

Fig. 2 shows that the proposed method is successful in

clearly discriminating between the right hand and right foot

motor imageries EEG signals. The ERD plot of the projected

signals shows that the right hand EEG signals has the lower

variance and the right foot EEG signals has the higher vari-

ance.
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Fig. 2. The averaged ERD time course for the projected right

hand and right foot EEG signals using the proposed SCSP

method.

The proposed SCSP not only extracts discriminatory in-

formation from the signals, the non-zero elements of w ob-

tained from the method can possibly provide useful spatial

information about the cortex area that best discriminates any

two classes of signals. This is subject-specific. For exam-

ple, in subject al, aw and ay, the maximum value of the w
corresponds to the electrode that lies on the left side of the

primary motor cortex area of the brain (C3, CCP5 and PCP3).

This agrees with findings in the literature that the contralateral

motor cortex area is activated during hand motor imagery [7].

4. CONCLUSIONS

In this study, we focused on demonstrating how to obtain a

minimal set of electrodes that can be used to find the direc-

tion that best discriminates between two classes of EEG sig-

nals. This is achieved by introducing an �1-norm regulariza-

tion term in the CSP algorithm, which encourages sparsity

in the weights of the spatial filter. The spatial filter can then

project the EEG signals onto a space where one class of sig-

nals is minimally scattered and the other is maximally scat-

tered. The variance of the resulting signals carries good dis-

criminatory information.

It was demonstrated that a suitably chosen regularization

parameter ρ can produce a sparser solution with only a small

effect on the generalization ability of the classifier. The num-

ber of electrodes, on average, is successfully reduced by 89%,

i.e., from 118 electrodes to 13 electrodes even though the av-

erage drop in the classification accuracy is only 3.8%. Hence,

only a small number of electrodes is required in the signal ac-

quisition and the processing of EEG signals. This can benefit

both the operator and the user. Furthermore, the non-zero el-

ements (signals corresponding to the selected electrodes) are

deemed relevant in providing us useful subject-specific spa-

tial information of the EEG sources. The ρ value is selected

manually in this study. In the future, we plan to perform a

more detailed analysis on the effect of ρ on the performance

of the system and devise an automatic algorithm to select a

subject-specific ρ.

Our proposed SCSP method gives the flexibility of choos-

ing the number of electrodes desired by adjusting the value of

the regularization parameter. This method can potentially be

used in conjunction with other feature extraction methods to

improve the classification accuracy.
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