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ABSTRACT

Classification of time-varying electrophysiological signals is
an important problem in the development of brain-computer
interfaces (BCIs). Designing adaptive classifiers is a potential
way to address this task. In this paper, Bayesian classifiers
with Gaussian mixture models (GMMs) are adopted as the
decision rule to classify electroencephalogram (EEG) signals.
The stochastic approximation method (SAM) is used as the
specific gradient descent method for updating the parameters
of mean values and covariance matrices in the distribution of
GMMs, where the parameters are simultaneously updated in a
batch mode. Experimental results using data from a BCI show
that the stochastic approximation method is effective for EEG
classification tasks.

Index Terms— Bayesian classifier, brain-computer in-
terface (BCI), EEG signal classification, Gaussian mixture
model (GMM), stochastic approximation method (SAM)

1. INTRODUCTION

During the last few years, the research pace of brain-computer
interfaces (BCIs) has quickened greatly. A BCI is a channel
for communication and control, which does not depend on
the brain’s traditional output pathways of peripheral nerves
and muscles [1, 2]. Its potential applications include restoring
functions to those with motorial disabilities, alarming parox-
ysmal diseases, manipulating human’s control in inhospitable
even dangerous environments, etc [2]. Due to its intrinsic
complexity, research on a BCI is an interdisciplinary field
with neuroscience, psychology, engineering, clinical rehabil-
itation, and computer science included.
Electrophysiological signal classification which translates

people’s intents to external device commands is a central but
challenging task in a BCI. It recently attracts many atten-
tions from the signal processing and machine learning com-
munity [2, 3, 4, 5]. The focus of this paper is on the problem
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of electrophysiological signal classification arising in the cur-
rent BCI research. The signals considered here are electroen-
cephalograms (EEGs), which are electrophysiological signals
recorded in terms of the electroencephalography with elec-
trodes non-invasively placed on the human scalp. They reflect
electrical brain activities essentially generated by the under-
lying neurons in the cortex.

For a BCI in use, adaptive classification mechanisms are
necessary because EEG signals are typically instable, namely
they change over time due both to biological and to techni-
cal factors. Biologically, they change due to user fatigue and
attention, due to disease progression, and with the process
of training. Technically, they change due to amplifier noises,
ambient noises, and the variation of electrode impedances [2].
It will be challenging and often impossible even for the same
user to adopt a classifier trained on the first day to classify data
recorded during following days without retraining. Millán has
shown that two different mental tasks, imagination of left and
right hand movements respectively, can have closer power
maps than the same task during two consecutive recording
sessions [6]. The spontaneous variability of EEG recordings
between experimental sessions makes it difficult to classify
different EEG signals accurately, and necessitates on-line learn-
ing to improve the performance of the classifiers.

Although some methods including linear and nonlinear
have been proposed for EEG signal classification, e.g., Fisher
discriminant analysis, support vector machines, artificial neu-
ral networks, hidden Markov models [3, 4, 7, 8, 9, 10], they
are stationary in nature and can not effectively tackle the prob-
lem of classifying time-varying EEG signals. Up to the present
there is little work in the current literature addressing the prob-
lem of on-line EEG signal classification. The articles [6, 11,
12] are among the earliest ones discussing the problem of on-
line EEG signal classification based on Bayesian classifiers
and stochastic gradient methods (SGMs). In this paper, we
propose to use the stochastic approximation method (SAM)
for learning adaptive Bayesian classifiers. Experimental re-
sults on EEG signal classification and comparisons with the
basic SGM are implemented to evaluate the feasibility of the
proposed method.
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2. ADAPTIVE BAYESIAN CLASSIFIERS WITH
GMMS

As the articles [6, 11, 12] suggest, we adopt Bayesian classi-
fiers to carry out on-line EEG signal classification. Bayesian
classifiers assign the label of a sample to the class which has
the largest posterior probability. For the on-line applications
of BCIs, the recorded data are increasing dynamically. The
adaptive Bayesian classifier considers how to adaptively up-
date parameters using the new added samples, and then clas-
sify the forthcoming samples.
Suppose there are N training samples which come from

K classes, and each class denoted by Ck has the prior proba-
bility P (Ck) (k = 1, ...,K), s.t.,

∑K

k=1 P (Ck) = 1. Under
the framework of finite GMMs, the conditional distribution of
each class can be approximated by the weighted combination
of several Gaussian distributions [13], i.e.,

p(x|Ck) ∼=

Nk∑

i=1

ai
kG(x|μi

k,Σi
k), s.t.,ΣNk

i=1a
i
k = 1, ai

k > 0 ,

(1)
whereG(x|μi

k,Σi
k) is the Gaussian distribution with the mean

value μi
k and the covariance matrix Σi

k, andNk is the number
of Gaussian distributions enclosed in a GMM. ai

ks are combi-
national weights of the corresponding Gaussian distributions.
According to Bayes formula [14], given a sample x the

posterior probability of the class Ck can be transformed as

P (Ck|x) =
P (Ck)

∑Nk

i=1 ai
kG(x|μi

k,Σi
k)

∑K

j=1 P (Cj)
∑Nj

i=1 ai
jG(x|μi

j ,Σ
i
j)

. (2)

Let us denote the N available samples as {xn, yn} (n =
1, ..., N), where xn is the feature vector of the nth sample,
and yn is the corresponding label vector having K possible
states. If xn ∈ Ck, yn has the form of ek

K (using the 1-of-K
coding mechanism), that is,

yn � ek
K = [0, . . . , 1(k), . . . , 0]�(K). (3)

Similarly, denote ŷn as the outcome of the Bayesian classifier
for the input xn,

ŷn � [P (C1|xn), P (C2|xn), . . . , P (CK |xn)]� . (4)

Under the criterion of least mean square error, the opti-
mization objective function for estimating parameters of the
Bayesian classifiers is

min J(Θ) � min E{‖yn − ŷn‖
2} , (5)

where the variable Θ represents any of the parameters Nk,
ai

k, μi
k, Σi

k given in (1). Since the current objective func-
tion involves the computation of mathematical expectation,
the corresponding optimization task is called the stochastic
optimization problem [16].

For the convenience of later analysis, parameters Nk, ai
k

are presumed to be given or obtained from training data, while
parameters μi

k,Σi
k have the most general forms (μi

k is a gen-
eral column vector, and Σi

k is a qualified covariance matrix
with symmetric and positive definite properties) whose val-
ues will be obtained through on-line update.

3. METHODS FOR GRADIENT DESCENT

For the adaptive parameter update in the Bayesian classifiers,
gradient descent methods, which are also called the steepest
descent methods, can be used. However, as the mathemat-
ical expectation in (5) can not be obtained precisely in real
applications, it is infeasible to directly calculate the gradients
of related parameters for the stochastic optimization problem.
Some approximation should be applied. The SGM and the
SAM are two feasible variations of gradient descent methods
for approximating the stochastic optimization problem.

3.1. SGM

The SGM alters the objective function in (5) by replacing the
computation of mathematical expectation with the instanta-
neous value ‖yn − ŷn‖

2. The gradient ∇Θ‖yn − ŷn‖
2 of the

new objective function is called the instantaneous gradient.
Now the gradient descent algorithm can be written as:

Θ(n) = Θ(n− 1)− μ(n) · ∇Θ‖yn − ŷn‖
2 , (6)

where Θ represents the parameters to be updated, and μ(n) is
the learning rate at the time instant n [15]. For a new sample,
the SGM first calculates the instantaneous gradient, and then
carries out adaptive update using (6).

3.2. SAM

As an alternative for (5), we can also adopt a considerable
number of samples to approximate the calculation of mathe-
matical expectation. The optimization problem becomes

min JN (Θ) � min
1

N

N∑

n=1

‖yn − ŷn‖
2 , (7)

which is called the deterministic optimization problem as it
doesn’t include the mathematical expectation [16, 17]. The
gradient descent method solving the problem is called the
SAM, which is given by

Θ(n) = Θ(n− 1)− μ(n) ·
1

N

N∑

i=1

∇Θ‖yi − ŷi‖
2 , (8)

where parameters Θ and μ(n) have the same meanings as be-
fore.
The SAM is a batch processing algorithm, which employs

a pool of samples to calculate gradients and update parame-
ters. Therefore, it can in principle discover parameters which
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are suitable to the current data pool. With the continually
added samples, the SAM can renew the data pool used for gra-
dient computation, and consequently update the correspond-
ing parameters adaptively. Note that in order to facilitate the
selection of the learning rates, the gradients∇Θ‖yn− ŷn‖

2 in
(6) and 1

N

∑N

i=1∇Θ‖yi − ŷi‖
2 in (8) are usually normalized

to be identity vectors.

3.3. Qualitative comparison

The SGM and the SAM are applicable to update parameters
for learning adaptive Bayesian classifiers. However, the dif-
ference on the number of samples used to calculate gradients
may induce distinct results of parameter learning. Since the
SGM only adopts one sample for subsequent parameter up-
date and the single sample may not satisfactorily represent
the distribution of future samples, the learned parameters may
not generalize well to unknown samples. Making it worse, the
negative influence from possible noises can deteriorate the ac-
curacy of the computed gradients to a large extent.
Different from the SGM, the SAM integrates more than

one sample in computing gradients. Thereby the negative in-
fluence from noises is largely reduced. Furthermore, if the
data pool is representative, the resultant classifier parameters
will generalize well to unknown samples. Therefore, here we
adopt the SAM for learning adaptive Bayesian classifiers.
The formulation for the instantaneous gradient ∇Θ‖yn −

ŷn‖
2 is needed to apply whether the SGM or the SAM. Since

it was already derived in [12], here we simply adopt the result
to carry out subsequent parameter update.

4. CASE STUDY

4.1. Data description and parameter setup

The data used in this paper are provided by the IDIAP Re-
search Institute of Switzerland as a benchmark for algorithm
evaluation. They are EEG recordings taken from normal sub-
jects during three mental imagery tasks. The mental tasks
are imagination of repetitive left hand movements (class C1),
imagination of repetitive right hand movements (class C2)
and generation of different words beginning with the same
random letter (class C3). Data from the first two subjects
(denoted by S1 and S2 respectively) are used. For a given
subject, there are four non-feedback sessions recorded. After
spatial filtering and power spectral density estimation, the raw
EEG signals are converted to 96-dimensional feature vectors
with every 12 entries coming from one of eight centro-parietal
electrodes (EEG signals recorded over this region can reflect
the discriminative activities of brain’s sensorimotor cortices).
The numbers of samples in the four sessions for subjects S1
and S2 are respectively 3488-3472-3568-3504, and 3472-3456-
3472-3472 [18]. In this paper, the 96 dimensional precom-
puted features are adopted to simulate on-line classification.

Six data sets are constructed from the above data for al-
gorithm evaluation. Each data set consists of a training set
and a test set. The first three are formed using the data of
four sessions from S1, and so on, for a total of six data sets.
Specifically, data sets 1, 2, 3 are respectively composed of
session pairs 1 ∼ 2, 2 ∼ 3, 3 ∼ 4 of S1. Data sets 4 to 6 are
constituted with a similar style from subject S2. For each pair
of sessions, the former session serves as the training set, and
the latter the test set.
Parameters P (Ck), Nk and ai

k in the adaptive Bayesian
classifiers are taken as the same setup in [6], that is, P (Ck) =
1
3 , Nk = 4 and ai

k = 1
4 (k = 1, 2, 3; i = 1, 2, 3, 4). To

reduce the parameters to be estimated, principal component
analysis is adopted to reduce the feature dimension by reserv-
ing 90% energy on each data set [14]. By running the SAM
on a training set, we can obtain the estimated values of μi

k

and Σi
k, which are taken as the initial configurations for the

on-line update of classifier parameters on the corresponding
test set. The termination condition for learning μi

k and Σi
k

on a training set is either 100 steps of iteration are reached or
parameters converge.

4.2. Quantitative comparison of SAM and SGM

To quantitatively evaluate the performance of the SAM and
the SGM for gradient descent, we now compare these two
methods on the available training sets. Without loss of gener-
ality, the size of each training set is reduced to one-fourth of
the original size by down-sample processing.
The objective function of the SAM is taken as the mean

square error of all samples in the training set. The learning
rates for updating μi

k and (Σi
k)−1 are fixed as the same value,

which is selected within the small range of {1e − 1, 1e −
2, 1e − 3, 1e − 4}. The range is chosen empirically based
on previous knowledge on adaptive learning. Experimental
results indicate that if the learning rate is 1e − 1 or 1e − 2,
the objective function will not converge, while if the learning
rate is 1e − 4, it will converge extremely slowly. Therefore,
the learning rate is finally set as 1e− 3. The maximal steps of
iteration are fixed as 100.
The objective function of the SGM is the same with that of

the SAM. During the phase of parameter update, each sample
in the training set serves as the input in turn, and is used only
once. The learning rate is selected from a small range {1e −
3, 1e−4, 1e−5, 1e−6}. Due to the same reason for selecting
learning rates in the SAM, the learning rate in the SGM is
finally set as 1e− 5.
Fig. 1 shows the curves of the values of objective func-

tions with increasing iteration steps by the two gradient de-
scent methods on data sets 1, and 4. The curves on other
data sets are quite similar. The result reveals that given finite
training samples the SAM can always decrease the values of
objective functions, while the SGM can not do this and the
corresponding curves don’t have a steady tendency. Thereby,
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Fig. 1. The values of objective functions with increasing it-
eration steps. The left two figures are obtained by the SAM,
while the right two figures are obtained by the SGM.

Table 1. The classification accuracies (%) obtained by the
adaptive (Ada) and off-line (Off) Bayesian classifiers

Data set
1 2 3 4 5 6

Off 73.13 65.17 73.48 45.77 48.65 52.13
Ada 73.20 65.53 73.80 46.03 49.16 52.45

the effectiveness of the SAM is verified. This is the motive of
using the SAM in learning adaptive Bayesian classifiers.

4.3. Classification performance of the SAM

The data of the first two minutes from each test data set are
adopted to update the parameters of the Bayesian classifiers.
The rest of the data are used to test classification performance
of the learned classifiers. The learning rate is set as 1e − 3,
which is selected above on the training set. The iteration step
is simply taken to be 1.
The classification accuracies respectively obtained by the

adaptive Bayesian classifiers and the corresponding classifiers
without update (off-line) on the test data sets are given in Ta-
ble 1. We can find that, on all the data sets the accuracies
of the adaptive classifiers are better than those of the off-line
classifiers. Although the current performance improvement is
small, it can be expected to enlarge a lot if multiple iteration
steps rather than only 1 as used here are allowed.

5. CONCLUSIONS

In this paper, we address the problem of on-line classifying
EEG signals and propose to use the SAM for updating pa-
rameters of the Bayesian classifiers. Experiments show the
effectiveness and potential of the SAM. In the future, inves-
tigating the performance of multiple iterations for the SAM

using more data sets and exploring the feasibility of other gra-
dient descent methods would be interesting.
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