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ABSTRACT

Decomposition of audio signals into primary and ambient compo-

nents is useful for realizing spatial enhancements such as upmix

and stereo widening. In this paper, we present several methods for

primary-ambient decomposition of two-channel audio signals based

on signal-space geometry. We discuss the performance of the var-

ious methods with respect to target orthogonality conditions on the

estimated primary and ambient components, which cannot all be sat-

isfied due to the need to constrain the model components to the signal

subspace in light of limitations on implementation complexity.

Index Terms— spatial audio, primary-ambient decomposition,

signal analysis, signal representations

1. INTRODUCTION

In a variety of spatial audio analysis-synthesis applications, it is use-

ful or even necessary to separate the input audio signal into primary

and ambient components for processing and/or rendering; these ap-

plications include upmix [1, 2, 3], multichannel format conversion,

stereo widening, headphone reproduction [4], and spatial audio cod-

ing [5]. In processing primary components, which correspond to

discrete sources, the spatial properties should be preserved or sta-

bilized. For example, in a stereo reproduction, the spatial position

of phantom sources collapses to the nearest loudspeaker; in 2-to-5

upmix, i.e. expanding a stereo signal for multichannel reproduction,

the frontal imaging can be maintained for a wider listening area by

populating the center channel with appropriate primary content ex-

tracted from the stereo input [2]. For ambient components such as

reverberation, applause, or rain, the goal in spatial enhancement al-

gorithms is typically to achieve a perceptual impression of envelop-

ment, so such components should be rendered with an appropriate

spatial diffuseness [6].

This paper is organized as follows. Section 2 further discusses

the motivation for primary-ambient decomposition, describes prior

methods based on scalar time-frequency masks, and proposes a

vector decomposition model and orthogonality constraints for the

model. Several vector decomposition methods for primary-ambient

separation are considered in Section 3; these are based generally on

orthogonal projections, principal components analysis, and signal-

dependent bases. Concluding remarks are given in Section 4.

2. PRIMARY-AMBIENT SIGNAL DECOMPOSITION

In its simplest form, a primary-ambient decomposition of a stereo

signal can be expressed as

�xL = �pL + �aL (1)

�xR = �pR + �aR (2)

where �xL and �xR are the left and right channels of the stereo sig-

nal, �pL and �pR are the respective primary components, and �aL and

�aR are the corresponding ambient components. The vectors �xL and

�xR here could either be the original time-domain audio signals or

subband signals in a time-frequency representation, where the latter

case is typically preferable in that it provides some separation of the

signal components. Given the primary-ambient signal model of (1),

then, the task is to estimate the primary and ambient components

for each channel signal. The general idea in the model estimation is

that primary components in the two channels should be highly cor-

related (except for the case where a primary source is hard-panned,

i.e. present in only one of the channels) and that the ambient compo-

nents in the two channels should be uncorrelated; furthermore, the

primary and ambient components within a single channel should be

uncorrelated as well. These assumptions about the correlation prop-

erties stem from concepts in psychoacoustics (in that perception of

diffuseness is related to interaural signal decorrelation), room acous-

tics (in that late reverberation at different points in a room tends to

be uncorrelated), and in studio recording practices (wherein uncor-

related stereo reverb is often added in the production process) [6, 7].

2.1. Scalar mask methods

In several methods for ambience extraction described in the litera-

ture, the ambience components are estimated by applying a scalar

mask to the corresponding channel signal:

�aL = AL�xL (3)

�aR = AR�xR (4)

where the masks are based on the channel signal auto-correlations

and/or cross-correlation [2, 8, 9]. The primary components are then

given simply by

�pL = (1−AL)�xL (5)

�pR = (1−AR)�xR. (6)

In such decompositions, it is clear that the correlation coefficient

between the estimated components (either primary or ambient) is

the same as that between the original channel signals. For the case

where �xL and �xR are the original time-domain signals, such a scalar

mask approach clearly undermines the target inter-component cor-

relation conditions described earlier. Where �xL and �xR constitute

subband signals in a time-frequency representation of the input, the

correlation conditions of course do not hold on a per-subband basis;

however, a trend toward meeting the correlation relationships can be

observed for the time-domain signals generated from the estimated

subband primary and ambient components, especially if the primary

and ambient components are well resolved in the time-frequency

representation [9].
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2.2. Vector decompositions

In order to improve the performance of primary-ambient decomposi-

tions for spatial audio applications, we consider in this paper various

estimation approaches which, unlike scalar mask methods, satisfy

at least some of the target correlation conditions directly in the de-

composition. The basic idea is to derive primary and ambient unit

vectors for each channel such that the model in (1) can be further

specified as:

�xL = ρL�vL + αL�eL (7)

�xR = ρR�vR + αR�eR. (8)

where �vL and �vR are the primary unit vectors, �eL and �eR are the

ambience unit vectors, and where the expansion coefficients ρL, ρR,

αL, and αR describe the level and balance of the components.

Ideally, according to the assumptions discussed earlier, the unit

vectors should satisfy the constraints:

�vL = �vR (9)

�v
H

L �eL = 0 (10)

�v
H

R �eR = 0 (11)

�e
H

L �eR = 0 (12)

such that the primary components constitute a common fully corre-

lated source and the various inter-component orthogonality condi-

tions are satisfied. In the first condition, we are essentially assuming

that only a single primary source is active in the two-channel sig-

nal; in this light, carrying out such decompositions on the subband

signals in a time-frequency representation (such as the short-time

Fourier transform) is advantageous in that this source assumption is

more likely to be valid on a per-subband basis than for the original

time-domain signals.

Given that the signals �xL and �xR define a two-dimensional sig-

nal space, it is necessary to consider directions outside of the signal

subspace if the three orthogonality conditions (10)-(12) are to be

met. This excursion is problematic both in that the decomposition

problem is then under-specified and in that the complexity is pro-

hibitive for practical applications in consumer audio devices. For

the purposes of this paper, then, we restrict the considerations to unit

component vectors in the signal subspace, i.e. we use decomposition

vectors which can be derived as a linear combination of the origi-

nal signal vectors. As will be discussed in Section 3, some of the

constraints must be relaxed given this restriction.

3. GEOMETRIC DECOMPOSITIONS

Signal-space geometry provides a useful visualization of signal de-

compositions in that the correlation relationships between the vari-

ous components are immediately evident. In this section, we discuss

several decompositions based on signal-space geometry, focusing on

which of the constraints in (9)-(12) are satisfied by the respective

approaches. As will become clear, the various approaches are fun-

damentally defined by how the unit vectors in the primary-ambient

signal model are determined.

3.1. Cross-channel projection

The cross-channel projection (CCP) approach is based initially on

the premise that the ambience component in a given channel should

be uncorrelated with the full signal in the other channel. If the or-

thogonality conditions in (10)-(12) are indeed met, we have, e.g.

�e
H

L �xR = �e
H

L (�vR + �eR) = �e
H

L �vR + �e
H

L �eR = 0. (13)

While the conditions

�e
H

L �xR = 0 �e
H

R �xL = 0 (14)

of course do not imply that the component orthogonality conditions

in (10)-(12) are necessarily satisfied, they do provide a useful ba-

sis for establishing the decomposition vectors. Initially, suppose we

select

�vL =
�xR

‖�xR‖
�vR =

�xL

‖�xL‖
. (15)

Then, the conditions in (14) are met if ρL and ρR are determined by

orthogonal projection:

ρL = �v
H

L �xL ρR = �v
H

R �xR. (16)

The ambience components are then given by the projection residuals:

αL�eL = �xL − (�v H

L �xL)�vL (17)

αR�eR = �xR − (�v H

R �xR)�vR (18)

which yields the decomposition shown in Figure 1(a), where the

dashed lines indicate the ambience components.

The CCP representation is useful for some stereo enhancement

effects in that it characterizes the inter-channel signal differences in

the directions �eL and �eR, but it has a clear shortcoming in the pri-

mary component estimation in that �vL and �vR are no more corre-

lated than the original signals. To address this, consider modifying

the decomposition in Figure 1(a) by reallocating some of the esti-

mated ambience component to the primary component for each of

the channels:

�xL = (ρL�vL + βL�eL) + (αL − βL)�eL (19)

�xR = (ρR�vR + βR�eR) + (αR − βR)�eR. (20)

The effect of this reallocation is that the ambience unit vectors are

preserved, but the primary unit vectors are modified so as to “fo-

cus” the primary components in the decomposition. Of course, there

are infinitely many solutions for the adjustment gains {βL, βR} such

that the modified primary components are fully correlated (colinear).

Two such solutions are depicted in Figure 1(b) and Figure 1(c), based

respectively on the assumptions that the two channels have equal

ambient-to-signal energy ratios and that the ambience components

in the two channels have equal energy [9]. The latter assumption is

typically favorable in practice, as the ambience is generally balanced

between the two channels in stereo recordings; the former assump-

tion tends to break down in the presence of a primary source that is

dominant in one of the channels.

It should be clear from the illustrations in Figure 1 that the mod-

ified CCP decomposition satisfies the primary component constraint

in (9), but does not actually meet any of the orthogonality constraints

in (10)-(12). On the other hand, it should also be clear that the

method provides a reasonable relaxation of the orthogonality con-

straints in that none of the constraints are radically violated. Indeed,

the adjustment gains {βL, βR} could be determined so as to balance

the component correlations subject to some optimization criterion,

but such an extension is beyond the scope of this paper.

3.2. Principal components analysis

In [10], a primary-ambient decomposition method based on princi-

pal components analysis (PCA) is presented. In the algorithm, the

principal component vector is found as

�d = (�x H

L �xR)�xL + (λ0 − �x
H

L �xL)�xR (21)
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(a) (b) (c)

�xL �xL �xL

�xR �xR �xR

Fig. 1. Signal decomposition using cross-channel projection and

modification: (a) orthogonal projection; (b) with equal ambience ra-

tios; (c) with equal ambience energies. The ambience components

are shown as dashed lines.

(a) (b) (c)

�xL �xL

�xL

�xR �xR �xR

Fig. 2. Primary-ambient decomposition using principal components

analysis: (a) PCA; (b) the PCA decomposition in (a) with an ad

hoc modification to improve the decomposition of uncorrelated in-

puts; (c) an example of the modified PCA decomposition for a more

strongly correlated signal.

where λ0 is the dominant eigenvalue of the input covariance matrix.

Based on an assumption that the primary component constitutes the

majority of the energy in the audio signal, the primary unit vector is

selected as

�v =
�d

‖�d ‖
(22)

and the ambience components are estimated as the residuals after

orthogonal projection of the channel signals onto �v:

αL�eL = �xL − (�vH
�xL)�v (23)

αR�eR = �xR − (�vH
�xR)�v. (24)

This approach finds the unit vector �v that best describes the input

signals: it maximizes the sum of the projection energies |�vH�xL|
2 +

|�vH�xR|
2 and likewise minimizes the residual energy |αL|

2 + |αR|
2.

As such, if the primary component is dominant in the input signal,

the principal PCA component provides a robust estimate of this pri-

mary component.

An example of a PCA-based decomposition is shown in Fig-

ure 2(a). The PCA decomposition satisfies the primary commonal-

ity constraint (9) and the primary-ambient orthogonality conditions

(10)-(11) by construction. However, the constraint (12) is violated in

that the estimated ambience components are actually colinear (with

a negative correlation). Furthermore, when the input signals are not

highly correlated (and the primary dominance assumption does not

hold), the PCA approach overestimates the primary component in

the decomposition [9]. While the PCA method provides a perceptu-

ally compelling primary component for many natural audio signals,

it is necessary to address these shortcomings in a general algorithm.

In the following two sections, corrective methods which leverage the

PCA primary component estimation but improve the decomposition

for weakly correlated signals are described.

3.3. Modified PCA

The PCA-based primary-ambient decomposition relies on the as-

sumption that the primary component is dominant. When this is

the case, as in many audio recordings, the primary component ex-

traction is perceptually compelling. However, as shown in [9], the

PCA underestimates the amount of ambience energy, most markedly

when the two channels are uncorrelated (and there is no true primary

component); instead of identifying both channels as ambient, it se-

lects the higher-energy channel as the principal component (which

corresponds to the primary unit vector in the decomposition) and

the lower-energy channel as the secondary component (which corre-

sponds to the ambience unit vector). The PCA is thus clearly valid

only when the dominance assumption holds, i.e. when |φLR| is close

to one. As |φLR| approaches zero, the primary-ambient decomposi-

tion would indeed be better estimated by considering the signal to be

entirely ambient. This observation suggests an ad hoc modification

of the PCA decomposition:

�xL = |φLR| (ρL�vL + αL�eL) + (1− |φLR|) �xL (25)

= |φLR|ρL�vL + |φLR|αL�eL + (1− |φLR|) �xL (26)

�xR = |φLR|ρR�vR︸ ︷︷ ︸ + |φLR|αR�eR + (1− |φLR|) �xR︸ ︷︷ ︸ (27)

where the underbraces indicate the modified primary and ambient

components. An example of this modified PCA decomposition is de-

picted in Figure 2(b), where it should be clear that the estimated am-

bience components are significantly less correlated that in the PCA

decomposition of Figure 2(a). Informal listening tests indicate that

this approach provides a substantial improvement over PCA for syn-

thetic test signals and a slight improvement for typical music audio.

3.4. Orthogonal ambience basis expansion

Of the methods described in the previous sections, none provide a

decomposition that explicitly satisfies the inter-channel ambience or-

thogonality condition in (12). In this section, we develop a method

that ensures the ambience components are always orthogonal by di-

rectly constructing the ambience unit vectors to be orthogonal, i.e.

to constitute an orthonormal basis for the signal subspace. The basis

is derived such that
�eH

L �xL

‖�xL‖
=

�eH

R �xR

‖�xR‖
(28)

which ensures that the ambience basis functions are not biased with

respect to either of the input signals. Furthermore, if the input signals

are fully uncorrelated, the ambience unit vectors will be found as

normalized versions of the signals themselves.

The ambience basis derivation consists of two steps: first, an

orthogonal basis for the signal subspace is constructed using a Gram-

Schmidt process:

�gL =
�xL

‖�xL‖
(29)

�gR = �xR − (�g H

L �xR)�gL (30)

where �gR is subsequently normalized. Then, the ambience unit vec-

tors are determined by rotating the Gram-Schmidt basis:

[
�eL �eR

]
=

1

(1 + |γ|2)
1

2

[
�gL �gR

] [
1 −γ∗

γ 1

]
(31)

where

γ =
1

φLR

[
−1 + (1− |φLR|

2)
1

2

]
(32)
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(a) (b) (c)

�xL

�xL

�xL

�xR �xR �xR

Fig. 3. Primary-ambient decomposition using a signal-adaptive or-

thogonal ambience basis and a primary unit vector derived by PCA.

is used; this choice of γ rotates the Gram-Schmidt basis such that

the resulting ambience unit vectors �eL and �eR satisfy the condition

in (28).

After the ambience basis is derived, each channel is decomposed

using the corresponding ambience unit vector and a primary unit

vector derived via PCA; we retain the PCA unit vector in this algo-

rithm due to its robust performance for correlated (i.e. mostly pri-

mary) input signals. The expansion coefficients are given by

[
ρL

αL

]
=

([
�v �eL

]
H

[
�v �eL

])−1 [
�v �eL

]
H

�xL (33)

[
ρR

αR

]
=

([
�v �eR

]
H

[
�v �eR

])−1 [
�v �eR

]
H

�xR (34)

which can be readily simplified as

ρL =
�vH�xL − (�vH�eL)(�eH

L �xL)

1− |�vH�eL|
2

(35)

αL =
�eH

L �xL − (�eH

L �v)(�vH�xL)

1− |�vH�eL|
2

(36)

and similarly for ρR and αR. If the input signals are not correlated,

the ambience basis expansion coefficients αL and αR will be domi-

nant, whereas if the input signals are highly correlated, the primary

coefficients will be dominant. We can thus view this as a formaliza-

tion of the modification in Section 3.3, with the distinction that the

ambience component orthogonality is always ensured here. Several

examples of signal decomposition using this orthogonal ambience

basis approach are illustrated in Figure 3; note that the ambience

components are orthogonal in all cases. This ambience orthogonal-

ity leads to an improved subjective quality for the decomposition

with respect to the other methods described in this paper, at the cost

of the additional computation needed to derive the ambience basis.

4. CONCLUSIONS AND FUTURE WORK

In this paper we have presented several vector-space methods for

decomposing a two-channel audio signal into primary and ambient

components. The methods were discussed with respect to desired

orthogonality conditions for the model components, and graphical

depictions of the decompositions were used to illustrate the per-

formance with respect to these conditions. Future work includes

extending these methods to the multichannel case, wherein a ro-

bust primary-ambient decomposition of an arbitrary number of input

channels is needed.
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