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ABSTRACT

A well known problem in loudspeaker equalization is that mixed
phase design of the inverse filter causes residual “pre-ringings” in
the equalized system, due to the spatial variability of loudspeaker-
room transfer functions. A common strategy for robust and percep-
tually acceptable equalization is therefore to use minimum phase fil-
ters only. In this paper, a method for cautious mixed phase equaliza-
tion is proposed. By analysis of a set of room transfer functions, it is
concluded that some non-minimum phase zeros are insensitive to re-
ceiver position, and can therefore be robustly inverted. The method
improves upon a minimum phase equalization by extending the min-
imum phase model with a robustly invertible all pass link. Valida-
tion measurements show that the time-domain aspect of equaliza-
tion is improved throughout the spatial region of interest, while pre-
ringings are kept at a very low and prespecified level.

Index Terms— 1.oudspeaker equalization, Robustness, All-pass,
Excess phase, Acoustic signal processing

1. INTRODUCTION

The aim of single-channel loudspeaker equalization is to construct a
linear time-invariant filter which improves sound reproduction over
a spatial region, based on a set of Room Transfer Function (RTF)
models acquired within the region. This is known to be a hard prob-
lem due to the spatial variability of the RTFs. In particular, if a fil-
ter is designed to compensate for non minimum phase behavior—so
called mixed phase equalization—it will necessarily contain a non-
causal pre-response which may not exactly match any true RTF in
the room. As a result, the equalized system will contain residual
pre-ringings.

Several different approaches for robust equalization have been
suggested in the literature. Examples include multiple-point least-
squares (L.S) methods [1, 2], common acoustical poles [3], or com-
plex smoothing [4]. LS and complex smoothing approaches are
mixed phase methods, which however lack explicit control of pre-
ringings. Most other methods use minimum phase modeling and
subsequent inversion, which is free from pre-ringing artifacts but
lacks precision in terms of phase response correction.

The purpose of this paper is to present a new method for cau-
tious mixed phase equalization, yielding spatially robust inversion
without the adverse pre-ringing side effects. This is accomplished
by concatenating a minimum phase inverse with a robustly designed
all pass filter. The minimum phase inverse used here is a typical
“magnitude correction” filter of moderate spectral resolution.

First author is also with Dirac Research AB, Hansellisgatan 6, SE-754
50 Uppsala, Sweden

1-4244-1484-9/08/$25.00 ©2008 IEEE 385

The paper is organized as follows. In Section 2, we discuss how
RTF zeros vary with receiver position, providing a rationale for our
mixed phase inversion approach. In Section 3, a quantitative relation
is established between the variability of non-minimum phase zeros
on the one hand, and residual pre-echoes on the other. As an out-
come of this analysis, a strategy for robust mixed phase equalization
is proposed. In Section 4, the performance of the new equalizer is
evaluated using real measurements in the listener region. Section 5
concludes the paper and points out some directions for further im-
provement.

2. VARIABILITY OF RTF ZEROS

In order to obtain a qualitative understanding of how RTF zeros vary
with receiver position, a set of 18 RTFs were acquired along a line of
microphone positions, spaced 2.5 cm apart. The reverberation time
in the room was about 0.4 sec in the low frequency region, moti-
vating an FIR model covering this time frame. As is evident from
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Fig. 1. Zeros of 18 transfer functions, acquired from microphone
positions along a line. Zeros are represented by circles, where dif-
ferent radii are used to distinguish individual microphone positions.
The smallest and largest radii represent the start and stop positions,
respectively. The two diagrams represent zoomed segments of the
complex plane near the unit circle, at 100 — 150 Hz (left) and
150 — 200 Hz (right).

Figure 1, zeros of the RTFs move around as the microphone position
changes. In particular, slightly above 200 Hz, a zero moves from the
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inside of the unit circle to the outside—a typical example of a zero
which cannot be inverted without causing severe pre- or post-ringing
errors in most positions. However, some zeros further out from the
unit circle exhibit a more static behaviour. For example, in the left
diagram of Figure 1 there is a moving zero outside the unit circle
at about 135 Hz. This zero is more static and further away from the
unit circle than the zero present at about 185 Hz in the right diagram.
Since the former causes less variation along the unit circle than the
latter, inversion of the former results in less error than inversion of
the latter. Based on these observations, it is reasonable to assume
that some non-minimum phase zeros can be safely inverted under a
constraint of a maximum tolerable residual pre-ringing.

3. MINIMUM PHASE/ALL-PASS MODELING AND
INVERSION

Any linear time-invariant system with transfer function H(z) can
be expressed as a cascade of a minimum phase filter and an all
pass filter, H(z) = Hm(z)Hap(z). The use of such a decom-
position simplifies the analysis and it separates the minimum and
excess phase parts of the inverse filter design. Clearly the magni-
tude is completely contained in the minimum phase part and the
all pass part is determined from the non-minimum phase zeros of
H(z) [5, 6]. The causal and stable inverse G, (z) of the minimum
phase part Hy,(z) is obtained by simply inverting its transfer func-
tion: G (z) = 1/Hm(2). Similarly, the exact inverse of Hap(2)
is the noncausal all pass filter obtained as Gap(2) = 1/Hqp(2). In
the time domain, this is equivalent to time-reversing the all pass im-
pulse response, gap(k) = hap(—k). Gap(z) constructed this way
is, of course, not realizable, but it can be approximated with arbi-
trary accuracy by truncating its impulse response after time-shifting
it by as many samples as necessary. The total inverse filter will thus
contain the time-reversed tail of an all pass filter. Applied to a set of
RTFs, such a filter will cause residual pre-ringings, should the zeros
of the RTFs differ significantly from the model on which the filter
was based. This effect will be analyzed next.

3.1. Analysis of pre-ringing error

Suppose that a noncausal filter with transfer function G(z) has been
designed to be the inverse of a system H (z), but with a small mis-
match, so that the poles of G(z) do not completely cancel the zeros
of H(z). The residual pre-ringing that results can be quantified as
follows.

Let a zero of H(z) be represented by zo = 70e™° and a per-
turbation to this zero by € = pe®® where ro > 1,0 < p < 1;
0 <wo < m; — < 6 < m. Suppose that H (z) contains a complex
conjugate pair of zeros at zo + € and zp + €, so that

H(z) = Hi(2)H2(z) = (2 = (20 + €)) (2 — (20 + €)) H2(2) . (1)
Furthermore, suppose that G(z) contains the pole pair zo and Zg,

G(2) = G1(2)Ga(z) = Wl(z_%)az(z). o)
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The total transfer function of the equalized system thus becomes
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1 - 2R(e) Ga(2)Ha(2). (3)

Applying the inverse z-transform on each factor in the last line of (3)
yields

hiot (k) = [5(k)+Ar§ cos(—wok+®)u(—k) | g2 (k) xha (), 4)

where 6(k) is the Kronecker delta function, u(k) is the unit step
function, and
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In the above, R(z0) and J(z0) denote real and imaginary parts
of zo. In (3) and (5) we have used the assumption that % (e) # 0, and
|20 + 6\2 # |20 2 which is reasonable for measured data. Equation
(4) clearly shows how the pole/zero mismatch e between H (z) and
G(z) has created a noncausal ringing which affects the total system
in a convolutive way.

Suppose now that H,(z); n € {1, ..., N} represent a set of N
RTFs, each containing M zeros znm; m € {1,...,M}. Further-
more suppose that these zeros are expressed as perturbations, 2nm =
2om + €nm, Of the nominal zeros zom; m € {1,..., My, M, +
1,..., M}, where the first M, nominal zeros are located outside the
unit circle in the upper half plane. Once the nominal zeros zom =
TOmei‘”Dm and their perturbations €y, = pnmew”’" have been de-
termined, equations (4), (5) and (6) with obvious modifications can
be used to determine the maximum amplitudes A1, ..., Aar, of the
residual pre-ringings caused by placing poles at the nominal zero lo-
cations zo1, ..., 2oMm, and their conjugated counterparts Zo1, ..., 2o, -

3.2. Extraction of position-independent excess phase zeros

The next step towards obtaining a robust mixed phase inverse is to
actually determine the nominal zeros of interest and their perturba-
tions. If the RTF zeros are located close to one another in clusters
outside the unit circle, they are regarded as position-independent,
and can be safely inverted. A procedure for finding such clusters is
outlined below.

1. From the zeros of N RTFs, find M, well separated clusters of
non-minimum phase zeros (if such clusters exist) in the upper
half plane, where each cluster contains exactly one zero from
each RTE.

. Let e.g. the arithmetic mean of the zeros in the m'™ cluster
represent a nominal zero location zom; m € {1,..., M, }.

. For each zero zn,, in cluster m, construct the perturbation
€nm = Znm — Z0m; N € {1, U N}, and use equations (4),
(5) and (6) to compute the maximum pre-ringing amplitude
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4. Decide if the zeros in cluster m € {1,..., M,} are invert-
ible by a pole at zo., using a pre-ringing envelope constraint.
A reasonable constraint would, for example, be that for any
response in the listening region, the pre-ringing level should
be at least 60 dB below the maximum peak level for all time
instants before —5 msec, with the maximum peak level at
0 msec. At a sampling rate of 44100 Hz, this means that
2010g, ((Amrg,22") < —60. If this constraint is fulfilled, ac-
cept the nominal zero zo, referring to cluster m, as a posi-
tion-independent, robustly invertible zero. Otherwise, reject
the cluster.

Note that the above procedure merely illustrates the steps required
to extract robustly invertible zeros.

3.3. Construction of inverse filters

With H (z) parameterized as Hp, (2)Hqp(z) we will use a two-step
procedure to obtain a robust inverse. First, a conventional way to
obtain a robust minimum phase inverse is used. Thus a minimum
phase model H,(z) is constructed from 9 RTFs, using power re-
sponse averaging, magnitude regularization below 40 Hz and above
20 kHz, and 1/6 octave smoothing of the resulting magnitude curve.
The minimum phase inverse is then obtained as 1/H,,(z) For de-
tails about this kind of inverse filter construction, see e.g. [6, 7, 8].
Second, having obtained a set of position-insensitive non-minimum
phase zeros defining the all pass link Hqajp(2), common to all RTFs
in the listener region, inversion of this link is expected not only to
improve phase response in the region, but also to correct for phase
errors possibly introduced by the minimum phase inverse. The ro-
bust all pass inverse is obtained by truncating and time-reversing the
impulse response of Hgy(z). The total mixed phase inverse is ob-
tained by convolving the minimum phase and all pass inverses.

4. EQUALIZATION PERFORMANCE

4.1. Experimental conditions

In a room of dimensions 4.5 X 6 x 2.6 m, with a distance between
loudspeaker and microphones equal to 2.5 m, 9 measurement po-
sitions for filter design, and 9 for validation were selected accord-
ing to Figure 2. This microphone configuration is designed to cover
the typical head movements of a normal listener. The measurement
points were separated into a design set and a validation set, to ensure
that the equalizer is not over-fitted to a particular set of responses,
causing improvement at these particular points only. A test signal
was prefiltered with the minimum phase and mixed phase equal-
izer filters designed as in subsection 3.3, and validation impulse re-
sponses of length 0.5 sec were acquired in the black microphone
positions of Figure 2. In the mixed phase design, the pre-ringing
constraint described in subsection 3.2 was used.

4.2. Methods for evaluation

In order to correctly assess the robustness of equalization, it is nec-

essary not to focus on the behaviour in a single point, but on the

average (or sometimes, worst case) behaviour in the whole set of val-

idation points. We shall use the average Schroeder decay sequence

D(k), the average energy step response S(k), and the impulse re-
N M-1

sponse maximum level envelope L(k),
D(k) = 1010 YT (D) ()
= glO N M 1 h2( ) b

n=1 =k ;0
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Fig. 2. Geometry of microphone positions for filter design (white)
and validation (black).
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defined in (7), (8) and (9) respectively for evaluation of the time do-
main properties. Here hy, (k); k € {0, ..., M — 1} is an impulse re-
sponse of length M in microphone position n; n € {1,..., N}. All
responses are time-aligned and normalized so that max |hy (k)| =
|hn(ko)| = 1 for some time instant k = ko. While L(k) is useful as
a worst case presentation of pre- or post-ringing problems, S (k) and
D(k) indicate how good are the transient properties of the system.

4.3. Results

As the frequency response plots in Figure 3 show, the minimum
phase and mixed phase equalizers exhibit identical performance in
terms of magnitude response correction. This is expected, since by
construction the filters differ only in phase response, see middle and
bottom diagrams of Figure 3. The difference in performance be-
tween the filters is thus embedded in their phase curves, a difference
which is best assessed in the time domain. Figure 4 clearly shows
how the maximum peak level increases with the mixed phase design,
and the maximum level of pre-ringing does not exceed the constraint
that was set in the design (—60 dB before —5 msec). The energy
step responses of Figure 5 and the Schroeder decay curves of Figure
6 show how the mixed phase filter substantially improves upon the
pure minimum phase filter. For the full-range spectrum, the differ-
ence is most clearly visible in a short time window at the beginning
of the responses. Below 300 Hz however, the improvement of mixed
phase over minimum phase can be seen over a large time window.

5. CONCLUSIONS

A method for spatially robust mixed phase equalization of loud-
speakers has been proposed and evaluated. By extending a mini-
mum phase equalizer with a robust all pass inverse, substantial time-
domain improvement over minimum phase equalization is obtained.
It is our opinion that this result motivates a revision of the widespread
conclusion that non-minimum phase RTF properties must be ne-
glected in a robust equalizer design. Further studies of the method
are needed in order to generalize the results to other acoustical envi-
ronments. For example, the acoustical room parameters and the size
of listener region will have an influence on the position-independence
property. In the present work, mixed phase equalizer design was di-
vided into minimum phase and all-pass inversion, where the mini-
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