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ABSTRACT

Reproduction of a soundfield is a fundamental problem in

acoustic signal processing. A common approach is to use

an array of loudspeakers to reproduce the desired field where

the least square method is used to calculate the loudspeaker

weights. However, the least square method involves matrix

inversion which may lead to errors if the matrix is poorly con-

ditioned. In this paper, we derive a new theoretical continu-

ous loudspeaker method to obtain the loudspeaker aperture

function in order to avoid matrix inversion. In addition, the

aperture function obtained through continuous loudspeaker

method reveals the underlying structure of the solution as a

function of the desired soundfield, the loudspeaker positions

and the frequency. Results are verified through simulations.

Index Terms— acoustic field, least square method, ma-

trix inversion

1. INTRODUCTION

The ability to control the soundfield within a given region of

space is a fundamental problem in acoustic signal process-

ing. It is possible to reproduce a given soundfield using a set

of loudspeakers. The first studies of soundfield reproduction

were performed by Gerzon [1], in which he produced the first-

order spherical harmonics in terms of a plane wave soundfield

at a single point in space. In [2] [3], Kirkeby proposed the

least square techniques to determine the theoretical minimum

number of loudspeakers required to produce a soundfield lo-

cally. Most recent works in soundfield reproduction such as

[4], [5], [6], [7], [8] are based on the least square method due

to the advantage that the sound is matched over a region of

space rather than at a single point. However, the least square

approach involves a matrix inversion, if the matrix is poorly

conditioned, the solution may not exist. The condition num-

ber of the matrix dictates the sensitivity of errors of the result-

ing solution [9]. To avoid this, we apply the concept of con-
tinuous loudspeaker which has an aperture that is a function

of space variables and frequency, and we derive an approach
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to obtain the loudspeaker aperture function without using ma-

trix inversion. Then we approximate the continuous aperture

by a finite number of discrete loudspeakers to produce the de-

sired soundfield. In addition, the aperture function obtained

through the continuous loudspeaker method reveals the un-

derlying structure of the solution as a function of the desired

soundfield, the loudspeaker positions and the frequency.

In [4], some fundamental performance limits for plane-

wave soundfield reproduction in free space were developed

using spherical harmonics analysis. However, it also used

least square method to find the loudspeaker weights. In this

paper, we seek to use the concept of continuous loudspeaker

method to derive the performance bounds on the 2D plane-

wave soundfield reproduction in free space (i.e. we ignore

the effect of reverberation). Specifically, the relationships be-

tween the number of loudspeakers, the size of the reproduc-

tion region, the frequency range, and the desired accuracy are

in correspondence with the results obtained in [4]. Simulation

results demonstrate the favorable performance.

2. SYSTEM MODEL

In this paper, we concentrate on 2D or height invariant sound-

field. Let the radius of the circular spatial zone be r, whose

origin is at O as shown in Figure 1. The loudspeakers are

placed on the circle with angle φ and radius R > r. The

weight of a particular loudspeaker located at angle φ is de-

noted as ρ(φ, k), where k = 2πf/c is the wavenumber, f is

the frequency and c is the speed of sound propagation of 340
m/s. Throughout this paper, we use k instead of f to rep-

resent frequency since we assume constant c. kl and ku are

used to represent the lower limit and upper limit of the de-

sired frequency band respectively. Vectors are represented by

lower case bold face, e.g. x. A unit vector in the direction x
is denoted by x̂, i.e., x̂ = x/|x|.

2.1. Truncation Theorem

We can represent an arbitrary 2D (height invariant) soundfield

S(x, k) generated by any number of sound sources outside of
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Fig. 1. System model

a region of radius R, having the following representation:

S(x, k) =
∞∑

m=−∞
αm(k)Jm(k‖x‖)eimφx , (1)

where Jm(·) are the Bessel functions of order m, and αm(k)
are a set of coefficients for the sound field. Note, the repre-

sentation (1) is in a form of a Fourier series expansion. The

general representation of an arbitrary soundfield (1) can be

constructed by solving the Helmholtz wave equation in cylin-

drical coordinate system [10, p.67]. Note that any arbitrary

soundfield is a weighted sum of basis functions Jm(k‖x‖)eimφx ,

where m is referred to as the mode.

The representation (1) has an infinite number of orthogo-

nal modes, however, we can truncate this series expansion to

a finite number due to the properties of the Bessel functions

and the fact that the soundfield has to be upper bounded by a

spatial region where all sources are outside [11]. Hence, (1)

can be truncated to |m| ≤ M terms as:

SM (x, k) =
M∑

m=−M

αm(k)Jm(k‖x‖)eimφx , (2)

where the normalized truncation error is upper bounded as

εM (x) =
|S(x, k) − SM (x, k)|

2π|S(0, k)| ≤ ηe−δ, (3)

provided that the truncation length is chosen as M = �e‖x‖k/2�
where η ≈ 0.16127 and δ is a positive integer [11].

2.2. Desired Soundfield

We apply the truncation theorem for the desired soundfield.

The desired soundfield at a point x ≡ (‖x‖, φ) from O now

becomes

Sd(x, k) =
M∑

m=−M

α(d)
m (k)Jm(k‖x‖)eimφx , (4)

where α(d)
m (k) uniquely represents the desired field. Thus, the

problem we consider in this paper is follows: Given a sound-
field by its components α(d)

m (k) for m = −M, . . . , M , and k
∈ [kl,ku], how can we reconstruct the field in a spatial region
of radius r?

2.3. Actual Soundfield

Assume that no loudspeaker is placed inside the spatial zone

of interest. Let ρ(φ, k) be the aperture function of the circu-

lar continuous loudspeaker with radius R to achieve the de-

sired field. Thus, the reproduced soundfield within the circu-

lar zone at a point x from O is given by

Sa(x, k) =
∫

ρ(φ, k)
i

4
H

(1)
0 (k‖Rφ̂ − x‖)dφx. (5)

Here we have assumed that the loudspeakers are infinitely

long point cylinders (far-field sources). Note that the funda-

mental solution to the Helmholtz wave equation [10] in 2D is

(i/4)H(1)
0 (k‖Rφ̂ − x‖), where the source is at Rφ̂ and the

observation point is at x, and H
(1)
m (·) is the Hankel function

of the first kind 1.

Provided R > ‖x‖, we can use the addition theorem for

cylindrical harmonics [10] to write

H
(1)
0 (k‖Rφ̂−x‖) =

∞∑
m=−∞

H(1)
m (k‖R‖)e−imφJm(k|x|)eimφx .

(6)

We also use Fourier series expansion to express

ρ(φ, k) =
∞∑

m=−∞
βm(k)eimφ, (7)

where βm(k) are Fourier coefficients.

By substituting (6) and (7) into (5),we get

Sa(x, k) =
∞∑

m=−∞
βm(k)

i

2
πH(1)

m (k‖R‖)Jm(k‖x‖)eimφx .

(8)

Note that Sa(x, k) is a weighted sum of basis functions

Jm(k‖x‖)eimφx , where the m-mode weight is

βm(k) i
2πH

(1)
m (k‖R‖).

3. CONTINUOUS LOUDSPEAKER DESIGN

To design the loudspeaker aperture function, we equate the

desired soundfield (4) to the actual soundfield (8). i.e,

Sd(x, k) = Sa(x, k), (9)

for x ∈ desired region, k ∈ [kl,ku].

Using (4) and (8), we have for m = −M, . . . , M ,

βm(k) =
2

iπH
(1)
m (k‖R‖)

α(d)
m (k). (10)

We state this result as a theorem for reconstructing a given

soundfield using a theoretical continuous circular loudspeaker:

1This is different from spherical wave fronts from a point source

in 3D, where the fundamental solution to the wave equation in 3D is

exp(i‖Rφ̂− x‖)/‖Rφ̂− x‖.
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Theorem 1 If a desired soundfield in a 2D spatial region is
given by the cylindrical harmonics of the soundfield α(d)

m (k),
for m = −M , . . . ,M , and frequency band k ∈ [kl,ku], then
the aperture function of the theoretical continuous circular
loudspeaker of radius R to reconstruct the soundfield is:

ρ(φ, k) =
M∑

m=−M

2

iπH
(1)
m (k‖R‖)

α(d)
m (k)eimφ. (11)

4. DISCRETE LOUDSPEAKER ARRAY DESIGN

We will now address the engineering problem of physically

reproducing the soundfield using an array of loudspeakers.

We began with the concept of continuous loudspeaker, in or-

der to develop an exact relationship between the actual sound-

field and the aperture function. The aperture function of the

continuous loudspeaker will now be approximated by a dis-

crete loudspeaker array to permit practical implementation.

By applying sampling theorem to (11), we can observe

that if we have Q > 2M points (loudspeakers) on the circle,

then we can accurately reproduce ρ(φ, k) from its samples

ρ(φq, k), q = 1, . . . , Q . We assume these loudspeakers are

equally 	φ spaced on a circle of radius R, then the aperture

function at the qth loudspeaker now becomes

wq(k) ≈ ρ(φq, k)	φ. (12)

Hence, the aperture function of the continuous loudspeaker

is approximated to a discrete loudspeaker array by the follow-

ing theorem:

Theorem 2 If a desired soundfield in a 2D spatial region is
given by the cylindrical harmonics of the sound field α(d)

m (k),
for m = −M , . . . ,M , and frequency band k ∈ [kl,ku], we
can use Q discrete loudspeakers equally spaced on a circle
of radius R, provided Q > 2M . Thus the weight at Qth
loudspeaker to reconstruct the soundfield is:

wq(k) =
M∑

m=−M

2

iπH
(1)
m (k‖R‖)

α(d)
m (k)eimφq	φ. (13)

Remarks for Theorem 2:

1. From (11) and (13), we notice that the underlying struc-

ture of the loudspeaker aperture function/weights is a

function of desired field, loudspeaker positions and fre-

quency.

2. We have explicit exact form expression for loudspeaker

aperture function which are related to loudspeaker loca-

tion (R,φq) and model component of the desired sound-

field α(d)
m (k).

3. If the desired field is time varying, then there is no need

to perform the matrix inversion at each time interval to

update the loudspeaker weights. This leads to signif-

icant increased computational efficiency in a practical

implementation.

5. SIMULATION

In this paper, we use a simple example to illustrate the abil-

ity to reproduce a 2D sound field using the continuous loud-

speaker method. We consider a circular reproduction region

of radius 0.5m. The desired soundfield is monochromatic

plane wave of frequency of 400 Hz arriving from 45◦. This is

equivalent to kx = 3.696.

The rule of thumb proposed in [4] suggests Q ≥ 2M + 1,

where M = �kx�. This agrees with the sampling theorem

to discretize the continuous aperture Q > 2M . In this case,

we choose M = 4, thus requiring Q = 9 loudspeakers. The

loudspeakers are equally spaced on a circle of r = 1m. The

loudspeaker weights are calculated from (13), and the result-

ing reproduced field using continuous loudspeaker method is

shown in Figure 2. It is calculated at 101 × 101 points and

displayed as a “density plot” which means that the numeri-

cal values are represented by different shades of gray. The

top two plots show the real and imaginary parts of the desired

plane-wave field, and the bottom two plots show the field pro-

duced by the loudspeaker array. Figure 3 represents the 2D

soundfield reproduction using least square method for com-

parison. The reproduced field in Figure 2 corresponds well to

the desired field where the boundary of the reproduction area

is indicated in the circle. It has the same performance as the

sound field reproduced by the least square method. The re-

produced error in this case is 0.0149 which agrees very well

with the expected error of 0.04 referring to [4].

Fig. 2. Reproduction of a 2D plane-wave using continuous

loudspeaker method (a) desired field (b) reproduction field

5.1. Reproduction error

We define the reproduction error as:

εM (kx) =
∫ ‖Sd(x, k) − Sa(x, k)‖2dφx∫ ‖Sd(x, k)‖2dφx

(14)
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Fig. 3. Reproduction of a 2D plane-wave using least square

method (a) desired field (b) reproduction field

The reproduced error for different kr are shown in Figure

4. The reproduced error decreases with the increase of the

number of loudspeakers. We notice when Q > 2�kr�, the

reproduced error is less than 0.04. Once Q is beyond this

threshold, a larger number of loudspeakers only marginally

increases the reproduction accuracy. This validates the rule of

thumb proposed in [11] for choosing the required expansion

order.

Fig. 4. Reproduction error for a 2-D plane-wave field as

function of kr for different number of loudspeakers Q

6. CONCLUSION

In this paper, we propose the theoretical continuous loud-

speaker approach to calculate the loudspeaker aperture func-

tion in order to avoid matrix inversion required in the least-

square methods. The underlying structure of the loudspeaker

aperture function is a function of the desired field and the

loudspeaker positions. We have shown that for a wavenumber

k, we can accurately reproduce the sound field within radius

r by using a discrete number of Q > 2�kr� loudspeakers.

This continuous loudspeaker approach can be applied to the

soundfield reproduction in reverberant environment and also

can be extended for the 3D soundfield reproduction in the fu-

ture work.
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