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ABSTRACT 

 
Audio processing applications such as rate determination, 
bandwidth extension, compression, and noise reduction make use 
of loudness metrics. Most loudness estimation algorithms are 
computationally expensive and often not suitable for real time 
applications. In this paper, we present a low-complexity loudness 
estimation algorithm applicable to both steady and time-varying 
sounds. The model computes an estimate of the excitation pattern 
by simultaneously pruning the frequency components and detector 
locations. Comparative results indicate that the proposed 
algorithm performs consistently well for different types of audio 
signals at a reduced complexity.  
 

Index Terms— audio coding, loudness, psychoacoustics. 
 

1. INTRODUCTION 
 
Several psychoacoustic models that make use of masking 
have been previously proposed in the literature [1, 2, 8, 9]. 
Although some of these models have been successful in 
audio coding applications, their use in other audio 
processing applications is not straightforward. A number of 
algorithms relying on loudness metrics have been introduced 
[6, 10, 11]. For example, loudness models have been used to 
develop objective and hybrid measures that predict 
subjective quality [7]. In addition, rate determination 
algorithms that use perceptual loudness have been proposed 
in [11]. Also hearing aid systems use loudness models to 
compensate for perception loss [5]. Recently, bandwidth 
extension algorithms employed loudness metrics to 
determine the perceptual importance of the different sub-
bands [6] and reduce the side information bits. Sinusoidal 
analysis-synthesis algorithms based on loudness and 
excitation patterns have been proposed in [7] and [10]. 
Although the use of loudness patterns in all the 
aforementioned applications delivered very promising 
results, computational complexity for loudness estimation is 
very high.  

A number of loudness estimation algorithms have been 
proposed in the literature. Some simple loudness estimation 
algorithms employ frequency weighting curves such as the 
A, B or C weighting [9] derived from the equal loudness 
curves to model the non uniform sensitivity of human 
hearing. These models do not account for masking and 
therefore perform poorly for transient and broadband 

sounds. Recent models rely on modeling the cochlea as a 
bank of auditory filters with bandwidths corresponding to 
critical bands [1,2,5,9]. Some of these models [2] account 
for both steady and time-varying sounds. The level-
dependent auditory filters are either implemented in the 
frequency domain or in the time domain but in both cases 
real-time implementation is a challenge. 

In this paper, we propose a new algorithm for estimating 
loudness starting from Glasberg’s model [2]. The proposed 
algorithm computes a fast estimate of the excitation pattern 
(EP) by selecting the most relevant frequency component 
locations and detectors in a non uniform manner. The high 
resolution EP is obtained by linearly interpolating the initial 
EP estimate. The specific loudness and total loudness are 
extracted from the EP estimate. We compare the proposed 
algorithm to the Moore and Glasberg process and show that 
the differences in the loudness estimates are minimal, while 
the complexity is reduced considerably. 

The rest of the paper is organized as follows. Section II 
presents the Moore and Glasberg model. This description is 
accompanied by an analysis of performance and complexity. 
The proposed algorithm applicable to steady and time-
varying sounds is presented in section III. Section IV 
contains the experimental setup and sample results. Section 
V contains concluding remarks. 
 
2. ANALYSIS OF MOORE & GLASBERG’S  MODEL 

 
An overview of the Moore and Glasberg’s model [1,2] is 
given in this section. The block diagram of the algorithm is 
shown in Fig. 1. 
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Fig. 1: Block diagram of the loudness model [2]. 
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2.1 Model for steady sounds 
 
i) The specifications of the input spectral components S(i) 
are provided to the steady sounds model. ii) Following this, 
the spectral components S(i) undergo an outer and middle 
ear correction. This stage has an O(N) complexity, where N 
represents the number of frequency components. iii) The 
third stage computes an excitation pattern E(k) associated 
with the sound reaching the inner ear. Detectors are placed 
uniformly at 0.1 ERB (Equivalent Rectangular Bandwidth) 
units. ERB units are measured using an ERB number which 
represents the number of equivalent rectangular bandwidth 
auditory filters that can be fitted below any frequency. 
Auditory filter shapes are estimated for all detector location 
and frequency component combination which is an O(ND) 
complexity, where D is the number of detectors. iv) 
Following this, the excitation pattern E(k) at any detector k 
is calculated as the sum of the response from the different 
auditory filters [4] which change shape with center 
frequency and level [3]. This stage has an O(ND) 
complexity. v) The EP E(k) obtained is then transformed to a 
specific loudness pattern SP(k) according to the procedure 
described in [1]. Specific loudness represents the action of 
cochlea on the EP and represents loudness density pattern 
i.e. the loudness per ERB [5]. Therefore with D detectors 
this stage has an O(ND) complexity. vi) The final stage is the 
calculation of the area under the specific loudness pattern SP 
in order to obtain the total instantaneous loudness L . This 
stage is associated with an O(D) complexity. 
 
 2.2 Model for time-varying sounds 
 
The steady sound loudness model [1] does not account for 
temporal masking effects. Real life signals in general are 
time-varying and exhibit temporal masking. In [2], a model 
for time-varying sounds is developed using attack and 
release time parameters to model temporal masking and 
obtain the short-term and long-term loudness.  

In [2], spectral analysis is performed with six parallel 
FFTs on hanning windowed segments of 2, 4, 8, 16, 32, 64 
ms duration. Different frequency components are extracted 
from the appropriate segments to obtain appropriate time 
and frequency resolution. The spectrum obtained is updated 
at 1 ms intervals. The subsequent stages in the model are 
similar to the steady state model. Finally, the short-term 
loudness SL is obtained from the instantaneous loudness L 
which is a single operation per frame.  
 

3. PROPOSED LOUDNESS ALGORITHM 
 

From the previous section, we observe that the process 
associated with the highest complexity is the one used to 
evaluate auditory filter shapes and EP. In this section, we 
describe the proposed low-complexity loudness estimation 
algorithm for steady and time-varying sounds.  

 
3.1 Steady sound low-complexity algorithm 
 
The number of frequency components (N) and the number of 
detector locations (D) are pruned in a manner consistent 
with human perception. It now remains to decide what 
frequency components sf i ' , where }...2,1{ Ni ∈  and detector 

locations sd k '  where }...2,1{ Dk ∈  to choose in order to 

estimate the model. 
 
3.1.1 Detector pruning 
The loudness of a signal is directly related to the signal’s 
neural excitation pattern. The idea behind the proposed 
technique is to sample the excitation pattern at a sufficient 
number of points in order to capture its general shape. Most 
existing methods for generating excitation patterns place 
detectors uniformly along the basilar membrane. It is 
however sufficient to sample the EP at its maxima and 
minima to capture its shape; it is not necessary to sample 
uniformly. Let Lr = {dk; |dk – dk-||=0.1, k=1,2,…D} denote 
the reference set of detector locations expressed in ERB 
units, such that they are uniformly spaced at 0.1 ERB units. 
Let  Lo={dk| EP(k)/ k=0, k=1,2,…D} denote the “optimal” 
set of detector locations such that they correspond to the 
extrema of EP. For a linear interpolation scheme, sampling 
at the extrema is optimal. In our proposed algorithm we 
estimate the EP at the detector locations specified by Lr by 
linearly interpolating the EP obtained at the points specified 
by Le, where Le is an estimate of the set Lo because Lo is 
unavailable to us. The following two analysis shows that 
only a few detectors are sufficient for representing the EP: 
Firstly, an FFT of the reference excitation pattern 
corresponding to a spectrally complex music signal (a worst 
case scenario) shows that 99 % of energy is concentrated in 
the first 10 % of the spectrum, indicating at least a ten fold 
reduction in the cardinality of set Lr. Secondly, a search for 
the set Lo, carried out on the reference excitation pattern for 

Fig. 2: Plot showing cardinality of optimal detector 
set oL compared with reference set rL and estimated set eL . 
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different types of audio indicates that the cardinality of set 
Lo is of the order O (number of ERB units) which span the 
input audio spectrum. In Fig. 2, we plot the cardinality of the 
reference set of detectors (Lr), the optimal set of detectors 
(Lo), and the estimated set of detectors (Le). Comparing the 
reference set with the optimal set shows that the excitation 
pattern can be generated using significantly fewer detectors. 
 
3.1.2 Frequency component pruning 
It is known that multiple components falling inside the same 
critical band will have the same instantaneous loudness as 
any individual component with their combined sum of 
intensities [5]. This enables us to approximate the input 
audio spectrum inside each ERB unit with a single 
component of intensity equal to the combined sum of 
intensities within that ERB unit as shown in (1).  
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where S(i) is the input spectral amplitude and I(m) is the 
intensity pattern in the mth ERB and i represents the set of 
components in the mth ERB unit. In Fig. 3a, we show an 
example of a sample audio spectrum and intensity pattern 
I(m) plotted on an ERB unit scale.  

However, the shape of the EP depends on the 
distribution of the frequency components inside each ERB 
unit. In order to minimize the error in the shape of the 
estimated EP, it is necessary to estimate the location of the 
approximated frequency components and detector locations 
inside each ERB unit. 
 
3.1.3 Estimating pruned frequency and detector locations 
Here, we describe a procedure that estimates the positions of 
the approximated spectral components that best capture the 
structure of the EP. This set of frequency components can 
then be directly mapped to a set of EP detectors such that 
they capture the extrema of the reference EP directly   
(without having to compute it). The specific form of the 
auditory filter shapes allows us to estimate the positions of 
maxima of the EP from the spectrum directly. The response 
at a particular detector dk is given by 

)()..exp().1()( iSgpgpkEP ii

i
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where pi is the slope of the auditory filter at a center 
frequency fi, gi is the normalized deviation of the detector 
location dk from the frequency component location fi, and i 
represents the frequency index. 

For any component, S(i) in the input spectrum, the 
maximum auditory filter response due to S(i) will occur at a 
detector location for which |gi|  0, as exp(-pi.gi)  1 in (2). 
As a result, we select the maximum S(i) inside each ERB 
unit and place a detector close to it such that both S(i) and 
exp(-pi.gi) are maximized simultaneously in (2). In other 
words, the frequency component location corresponding to 

the maximum of the spectrum also corresponds to the 
maximum in the EP inside that ERB unit.  

In order to preserve the shape of the estimated EP, in 
particular the positions of maxima in relation to the 
reference EP computed at the locations given by Lr, the 
approximated components are placed at positions of 
maximal auditory filter response in each ERB. In Fig. 3b, we 
plot the reference excitation pattern and the estimated EP 
along with the positions of maximal auditory filter response.  
  
  

4. SIMULATION RESULTS 
 
In this section, the experimental setup is described and 
evaluation results are provided. The performance of the 
proposed algorithm was tested with different types of audio 
provided in the Sound Quality Assessment Material 
(SQAM) database. The audio signals are sampled at 44.1 
KHz and audio segments of 46 ms durations were used for 
the simulations. In real-life, sound levels can change 
abruptly across time. Therefore, each audio segment was 
referenced to an assumed Sound Pressure Level (SPL) 
between 30 and 90 dB randomly to account for these abrupt 
changes.  

We evaluate the performance of the proposed algorithm 
in terms of the Relative Error Energy (REE) and Average 
Error Energy (AEE) as defined in (3) and (4) for the EP 
which is indicative of the relative error at each detector 
location dk and average error across all detector locations. 
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Fig. 3: a) Plot of input and approximated spectrum. b) Plot of 
reference and estimated EP. 
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The error in the estimated loudness is evaluated in terms 

of the Average Loudness Error (ALE) and the Mean 
Loudness Error (MLE) which are defined in (5) and (6) 
respectively. 

ALE =
=

−′

P

j

jj LL
P

1

1                      (5)  

       MLE = max(| j -  Lj |), j {1,2…P}        (6) 
where Ê(k), E(k) are the estimated and reference EP 
expressed in linear power units. j, Lj are the estimated and 
reference instantaneous loudness. P represents the number of 
audio frames. 

In Table 1, we compute REE, AEE, ALE and MLE 
metrics for different types of audio material. The REE and 
AEE of the estimated excitation pattern are roughly about -
12.5 dB and -15 dB respectively. The error on loudness 
measured using the ALE and MLE metrics are 0.6 sones and 
2.6 sones on average across different audio signals. It can 
also be observed from Table 1 that the proposed algorithm 
performs consistently for different types of audio signals 
within a tolerable error. 

Furthermore, we compare the computational complexity 
of the proposed algorithm with the standard approach 
followed in [1]-[4]. We also highlight the complexity of 
each stage separately due to the differing nature of 
operations in each stage. From Table 2, it can be seen that 
the proposed algorithm achieves a significant reduction in 
complexity close to 96% on average.  

  

 

5. CONCLUSION 
 

In this paper, we proposed a low-complexity loudness 
estimation algorithm applicable for steady and time-varying 
sounds based on the Moore et. al [1, 2] model. The proposed 
algorithm becomes more efficient by pruning the less 
significant frequency components. The algorithm also 
prunes the number of detectors by retaining only those 
detector locations that receive the highest response inside 
each ERB unit. The proposed algorithm is also seen to 
perform consistently for a wide variety of input audio 
material. 
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Table 1: REE, AEE, ALE and MLE metric evaluation of the 
proposed algorithm for different audio material 

Loudness Error 
(sones) 

Different types of 
audio 

AEE 
(dB) 

REE 
(dB) 

ALE MLE 
Single Instruments -12.82 -14.84 0.72 3.2647 
Speech -12.80 -14.73 0.29 2.8186 
Vocal -12.03 -14.55 0.22 2.6029 
Solo Instruments -12.42 -14.60 0.44 2.2574 

Vocal & Orchestra -13.4 -18.57 0.95 3.2647 
Orchestra -11.52 -14.92 1.34 2.8186 
Pop Music -12.58 -14.90 0.27 2.6029 

Average -12.5 -15 0.6 2.6 

Table 2: Number of operations required in various stages of the 
model for the standard and proposed algorithm. 

Complexity comparison 

Stages D =415 
N =512 

standard(S) 

D = 43 
N = 41 

proposed(P) 

Complexity 
Reduction 
 (S-P)/S 

Auditory filters: O(ND) 90692 1186 98% 
EP: O(ND) 90692 1186 98% 
Specific loudness-O(D) 415 43 89% 
Total loudness: O(D) 415 43 89% 
Overhead 5120 4460 12% 
Total Complexity 187334 6650 96% 
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