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ABSTRACT

This paper provides an analysis of the steady-state behavior of the
filtered-x affine projection algorithm (FXAP). This efficient affine
projection (AP) algorithm for active noise control (ANC) applica-
tions is based on the filtered-x scheme, unlike most AP algorithms
based on the more computationally demanding modified filtered-x
scheme. This study depends on energy conservation arguments and
does not require an specific signal distribution. The theoretical ex-
pressions derived for the mean square error (MSE) allowed to accu-
rately predict the steady-state performance of the FXAP for mean-
ingful practical cases. Simulation results of a single-channel ANC
system validate the analysis and the theoretical expressions derived.

Index Terms— Adaptive control, Acoustic noise, Transversal
filters, Steady state stability.

1. INTRODUCTION

In the ANC field, affine projection (AP) algorithms have demon-
strated to be very helpful to outperform the convergence properties
of the conventional adaptive filters usually applied [1, 2] with a mod-
erate computational effort. Most of the AP algorithms proposed, in-
cluding their computationally efficient versions, are based on the
modified filtered-x scheme. However, a fast AP algorithm based on
the filtered-x scheme (FXAP), was recently proposed in [3] for mul-
tichannel ANC systems, see Fig. 1.

Despite the existing interest in this kind of algorithms, very few
works have been published in reference to their convergence proper-
ties. Among the different approaches, the analysis developed in [4]
for AP algorithms is based on energy conservation arguments and
does not depend on the input signal distribution. This approach was
applied in the context of ANC using the AP algorithm with the modi-
fied filtered-x scheme [5]. In the present paper, the methodology pre-
sented in [4] is applied to the FXAP algorithm based on the filtered-x
scheme to study its steady-state properties.

2. FILTERED-X AFFINE PROJECTION ALGORITHM

The filtered-x affine projection algorithm (FXAP) described
in [3] is an efficient version of the AP algorithm [6] based on the
filtered-x scheme. The update equation of the AP adaptive filter
coefficients in the single-channel case reads as:

∗ This work was partially funded by CICYT grant TEC2006-13883-C04-
01.

wL[n] = wL[n− 1]− μV
T [n](V[n]VT [n] + δI)−1

eN [n], (1)

where δ is a regularization parameter [7], μ is a convergence pa-
rameter [2] and eN [n] is called the error vector. Moreover, wL[n]
is a vector comprised of the L adaptive filter coefficients at the nth
time instant. MatrixV[n] of dimensionsN ×L contains the filtered
reference signal values as follows:

V
T [n] = [vL[n],vL[n− 1], ...,vL[n−N + 1]], (2)

where vL[n] is a vector with the more recent L samples of the refer-
ence signal x[n] filtered through a version Ŝ of the secondary path,
and N is called the affine projection order [6]. The objective is to
estimate the L-dimensional optimal coefficient vectorwo

L, such that
the desired signal vector was given by dN [n] = −V[n]wo

L. Howev-
er, this result is not achieved in practice [4] and it is more meaningful
to use,

dN [n] = −V[n]wo
L + rN [n] (3)

being rN [n] a N × 1 Gaussian noise vector of zero mean and σ2

r

variance, uncorrelated with data signal.
The error vector eN [n], built by past samples of error signal

e[n], can be expressed as:

eN [n] = dN [n] +

⎛
⎜⎜⎜⎝

v
T
L [n]wL[n− 1]

v
T
L [n− 1]wL[n− 2]

...
v

T
L [n−N + 1]wL[n−N ]

⎞
⎟⎟⎟⎠

= e
a′

N [n] + rN [n].

(4)

Likewise, we have defined the particular a priori error vector
e

a′

N [n]T by:

e
a′

N [n]T =

⎛
⎜⎜⎜⎝

ea
v [n]

ea
v [n− 1]
...

ea
v [n−N + 1]

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

v
T
L [n](wL[n− 1]−w

o
L)

v
T
L [n− 1](wL[n− 2]−w

o
L)

...
v

T
L [n−N + 1](wL[n−N ]−w

o
L)

⎞
⎟⎟⎟⎠ .

(5)
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3. STEADY-STATE ANALYSIS

In the steady-state analysis we are interested in the limit for
n → ∞ of the mean square error, MSE. That is,

MSE = ĺım
n→∞

E{|e[n]|2} (6)

or equivalently, in the excess mean square error (EMSE)

EMSE = ĺım
n→∞

E{|ea
v [n]|2} (7)

that are related by:

MSE = EMSE+ σ2

r , (8)

being σ2

r the noise variance.
Following the approach shown in [4], a recursion for ‖w[n]‖2

based on the energy conservation relation can be derived, where
||·|| denotes the Euclidean norm. Firstly equation (1) can be rewritten
in terms of the coefficient error vector, w̃L[n] = wL[n]−w

o
L, and

then it holds,

w̃L[n] = w̃L[n− 1]− μV
T [n](V[n]VT [n] + δI)−1

eN [n]. (9)

Let be ea
vN [n] and e

p

vN [n] the a priori and a posteriori error vectors,
respectively:

e
a
vN [n] = V[n]w̃L[n− 1], e

p

vN [n] = V[n]w̃L[n]. (10)

Then, suitably manipulating and taking energies at both sides of (9),
the energy conservation relation is obtained,

‖w̃L[n]‖2 + (ea
vN [n])T (V[n]VT [n])−1

e
a
vN [n] =

‖w̃L[n− 1]‖2 + (ep

vN [n])T (V[n]VT [n])−1
e

p

vN [n].
(11)

Note that the energies of the coefficient error vectors at different
iterations are related to the weighted energies of the a priori and a
posteriori error vectors, just as the relation provided in [4]. Applying
the expectation operator E{·} at both sides of (11) and the steady-
state conditions (E{‖w̃L[n]‖2} = E{‖w̃L[n− 1]‖2} as n →∞),
it becomes

μE{(ea′

N [n])T
Ψv[n]ea′

N [n]}+ μE{rT
N [n]Ψv[n]rN [n]} =

= 2E{(ea′

N [n])T
Φv[n]ea

vN [n]}
(12)

where the following matrices are defined

Φv[n] = (V[n]VT [n] + δI)−1 and
Ψv[n] = Φv[n](V[n]VT [n])Φv[n].

(13)

Assuming statistical independence between data related matrices
and the other involved vectors, and also the equality for two column
vectors of length N , aT

b = Tr(abT ), it yields

μTr(E{ea′

N [n](ea′

N [n])T }E{Ψv[n]})
+μTr(E{rN [n](rN [n])T }E{Ψv[n]})

= 2Tr(E{ea′

N [n](ea
vN [n])T }E{Φv[n]}).

(14)

Next, some simplifications and assumptions are applied to the differ-
ent terms in (14). When n → ∞ and neglecting off-diagonal terms
of the E{ea′

N [n](ea′

N [n])T } matrix, the first term on the left hand
side of (14) reduces to

μTr(E{ea′

N [n](ea′

N [n])T }E{Ψv[n]})
= μE | ea

v [n] |2 Tr(E{Ψv[n]}), (15)

being ea
v [n] the top element of the particular a priori error vector

e
a′

N [n].
The second term, related with the noise vector, simplifies to

μTr(E{rN [n](rN [n])T }E{Ψv[n]})
= μσ2

rTr(E{Ψv[n]}). (16)

On the other hand, the term on the right hand side of (14) can
be simplified by means of similar considerations. Using (4) and (10)
when δ is small, we get that

e
p

vN [n] = e
a
vN [n]− μe

a′

N [n]− μrN [n]. (17)

Then, the following relations can be derived,

E{vT
L [n]w̃L[n− 1]vT

L [n]w̃L[n− 1]} = E{|ea
v [n]|2},

E{vT
L [n− 1]w̃L[n− 2]vT

L [n− 1]w̃L[n− 1]}
= (1− μ)E{|ea

v [n− 1]|2},
...

E{vT
L [n−N + 1]w̃L[n−N ]vT

L [n−N + 1]w̃L[n− 1]}
= [1− (N − 1)μ]E{| ea

v [n−N + 1] |2},
(18)

and since in steady-state {|ea
v [n]|2} = E{|ea

v [n − 1]|2} = . . . =
E{|ea

v [n−N + 1]|2}, it leads to

E{ea′

N [n](ea
vN [n])T } ≈ E{| ea

v [n] |2}D1, (19)

where the diagonal matrixD1 is given by:

D1 =

⎛
⎜⎜⎜⎜⎜⎝

1
(1− μ)

(1− 2μ)
. . .

(1− (N − 1)μ)

⎞
⎟⎟⎟⎟⎟⎠

.

(20)
Finally, equation (14) becomes

μE{| ea
v [n] |2}Tr(E{Ψv[n]}) + μσ2

rTr(E{Ψv[n]})
= 2E{| ea

v [n] |2}Tr(E{D1Φv[n]})
(21)

and the EMSE of the corresponding filter is given by

EMSE =
μσ2

rTr(E{Ψv[n]})
2Tr(E{D1Φv[n]})− μTr(E{Ψv[n]}) . (22)

This expression can be simplified when the regularization parameter
δ is small enough. Then, we get,

EMSE = (μσ2

r)
Tr(E{Ψv[n]})

Tr((2D1 − μI)E{Ψv[n]})
= (μσ2

r)
Tr(E{Ψv[n]})

Tr(D2E{Ψv[n]}) ,
(23)

being I the N × N identity matrix and D2 a diagonal matrix given
by:

D2 =

⎛
⎜⎜⎜⎝

(2− μ)
(2− 3μ)

. . .
(2− (2N − 1)μ)

⎞
⎟⎟⎟⎠ .

(24)
Another two simplifications can be carried out depending on μ

parameter values:
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Fig. 1. Block-diagram of an ANC system using the filtered-x struc-
ture

If μ is small,D2 ≈ 2I and (23) reduces to,

EMSE =
μσ2

r

2
, (25)

If a large μ is used, then,

EMSE = (μσ2

r)
Tr(E{Ψv[n]})

Tr(D3E{Ψv[n]}) , (26)

where

D3 =

⎛
⎜⎜⎜⎜⎜⎝

1 0
−1

−3
. . .

0 3− 2N

⎞
⎟⎟⎟⎟⎟⎠

. (27)

4. SIMULATION RESULTS

In this section a comparison between the theoretical predicted
values and the values obtained from simulations is shown. The re-
sults are provided for a single-channel ANC system using the FXAP
algorithm, see Fig. 1. The input signal is a colored Gaussian sig-
nal generated by filtering white Gaussian noise (of zero mean and
unit variance) with a first order autoregressive filter of transfer func-
tion

√
1− a2/(1 − az−1) being a = 0,9. The desired signal d[n]

generated by following the model in (3) with Gaussian noise of
σ2

r = 0,001 and an optimal coefficient vectorwo
L of 16 coefficients.

The secondary path was perfectly model with an 8 coefficients filter,
and the adaptive filter has the same length as the unknown channel
(16 coefficients).

The experimental results of MSE were obtained by averaging
over 10 independent runs of 600,000 samples. In addition, different
step size μ values were applied for AP orders from N = 2 to N =
8. The regularization parameter δ was set to 10−5. The theoretical
estimation of MSE was provided by (22), (23), (25) or (26), and
using (8). The range of μ values chosen is from 0.01 to 0.1 in order
to guarantee stability of the adaptive algorithm, unlike the higher
values allowed in [4, 5] due to the use of the modified filtered-x
scheme.

Figure 2 shows the simulated MSE for different affine projec-
tions orders as a function of the step size. It is verified that the MSE
worsens when μ increases. Higher values of the order N speeds up
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Fig. 2. SimulatedMSE in dB as a function of μ for differentN orders.

this effect for increasing μ. On the other hand, the convergence speed
increases with N and μ [3].

The comparison between the estimated MSE using different the-
oretical expressions is illustrated in Fig. 3 forN = 6. Also, the sim-
ulated MSE is drawn. The estimated MSE curve that better agrees
with the simulation is obtained using (26), with the assumption of a
large μ.

Figure 4 shows a comparison between the simulated and the es-
timated steady-state MSE using (26) for AP orders N = 2, N = 4
and N = 6. The estimated curves lie close to the simulated ones,
closer for low μ values and projection orders of moderate value.

Figure 5 illustrates the evolution of the residual error of the
FXAP for N = 3, N = 7 and μ = 0,02 for the first samples.
Each sample of the diagram has been estimated by an exponential
windowed of 100 samples of the residual error power averaged over
10 runs, and only the transient period at the beginning of the adap-
tation process is shown. It can be observed the good convergence
speed the FXAP exhibits, much faster as N increases [3] and very
similar to the convergence performance of the AP algorithm based
on the modified filtered-x structure [7].

Finally, the obtained results can be compared to the study shown
in [4] and [5] and they are coherent with the evaluation results pro-
vided in those works.

5. CONCLUSIONS

In this paper, an analysis of the steady-state MSE performance
of the FXAP algorithm for ANC has been presented. The methodol-
ogy applied is based on energy conservation relations avoiding oth-
er more restrictive assumptions. Furthermore, the estimated steady-
state behavior of the FXAP algorithm has been validated by means
of simulation results provided by a single-channel ANC system. Fi-
nally, this analysis should be completed with an study of the transient
performance of the FXAP.
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