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ABSTRACT

This paper describes a new framework for extracting the
target signal in diffuse noise environments. We utilize crystal
arrays, a certain class of symmetrical microphone arrays with
crystal-like geometries, which enable interchannel decorrela-
tion of isotropic noise without knowing the value of its co-
variance matrix. We refer to this decorrelation as blind noise
decorrelation. Using an improved estimation of the signal
power spectrum obtained by the blind noise decorrelation, the
multichannel Wiener filter is properly implemented, which
is the optimal estimator of the target signal in the minimum
mean square error sense. Simulated experiments have shown
the effectiveness of the proposed method.

Index Terms— Array signal processing, covariance ma-
trix, diffuse noise, post-filter, power spectrum estimation.

1. INTRODUCTION

In the field of array signal processing, considerable research
has been conducted on extracting the target signal from the
observed noisy signals in various situations [1]. A fundamen-
tal delay-and-sum beamformer with a huge number of micro-
phones arrayed in a sufficiently large aperture could achieve
sharp directivity, but it is infeasible. The Minimum Variance
Distortionless Response (MVDR) beamformer works well
even with small arrays, especially for localized noise sources
by steering its nulls in the direction of them. In diffuse noise
situations such as cocktail parties, stations, or reverberant
rooms, combining the MVDR beamformer with post-filtering
techniques [2] is more effective. It is shown that the multi-
channel Wiener filter, which is the optimal estimator of the
target signal in the Minimum Mean Square Error (MMSE)
sense, can be decomposed into the MVDR beamformer and a
subsequent Wiener post-filter, where the most important issue
is the implementation of the Wiener post-filter.
So far, several methods have been proposed for imple-

menting theWiener post-filter. The most common approach is
to utilize the power spectra and cross-spectra of the observed
signals. Zelinski’s method [3] is based on the assumption that
the noise components in the observed signals are mutually
uncorrelated. However, this assumption is inaccurate, espe-
cially for small arrays or at low frequencies. For ideal noise

fields such as spherically isotropic noise fields, the theoreti-
cal coherence function is available. The methods proposed by
McCowan et al. [5] and Lefkimmiatis et al. [6] are based on
the assumption of a known noise field coherence function, im-
proving the Zelinski’s method. However, these methods may
still yield an inaccurate result when the assumed coherence
function is far from the actual one.
Instead of assuming a known noise field coherence func-

tion, our method is based on interchannel decorrelation of
isotropic noise without knowing the value of its covariance
matrix, utilizing symmetrical microphone arrays with crystal-
like geometries. This decorrelation enables the accurate esti-
mation of the signal power spectrum, so that the Wiener post-
filter is implemented properly. This paper is organized as fol-
lows. In section 2, the multichannel Wiener filter is reviewed
briefly. In section 3, the novel method for implementing the
Wiener post-filter is described. In section 4, experimental re-
sults are presented to verify the effectiveness of the proposed
method.

2. MULTICHANNELWIENER FILTER

2.1. Observation Model

We assume that each of the M microphones in the array re-
ceives a delayed and attenuated version of the target signal
corrupted by diffuse noise. This observation model can be
written in the time-frequency domain as

X(t, ω) = d(ω)S(t, ω) + N(t, ω), (1)

whereX(t, ω) denotes the observation vector, S(t, ω) the tar-
get signal, d(ω) the known steering vector, and N(t, ω) the
diffuse noise component.

2.2. Wiener Post-filter

We consider estimating S(t, ω) fromX(t, ω) by

Ŝ(t, ω) � wH(t, ω)X(t, ω), (2)

where w(t, ω) is a deterministic weight vector. For brevity,
we will omit the arguments t and ω hereafter. We assume
that S andN are zero-mean and mutually uncorrelated. The
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optimal weight vector in the MMSE sense is the multichannel
Wiener filter

wopt � Φ−1
XXφSSd, (3)

where ΦXX � E[XXH] and φSS � E[|S|2], where similar
notations will be used throughout this paper. Noting that

ΦXX = ddHφSS + ΦNN , (4)

we can factorize wopt into the MVDR beamformer (wMVDR)
and the Wiener post-filter (Hpost) [2]:

wopt =
φSS

φSS + (dHΦ−1
NNd)−1︸ ︷︷ ︸

Hpost

· Φ−1
XXd

dHΦ−1
XXd︸ ︷︷ ︸

wMVDR

. (5)

wMVDR can be easily calculated from the observed signals.
Therefore, the key for implementing the multichannel Wiener
filter is how to estimate φSS accurately from the observed
noisy signals.

2.3. Zelinski’s Method

If the noise components in the observed signals are uncorre-
lated, φSS can be obtained from each nondiagonal element in
(4), which is noise-free according to the above assumption,
by

φSS =
φXmXn

dmd∗n
(m �= n), (6)

where ∗ denotes complex conjugation. Zelinski [3] estimates
φSS by averaging (6) for all m and n such that m < n and
taking the real part:

φSS = �
[

2
M(M − 1)

∑
m<n

φXmXn

dmd∗n

]
. (7)

However, this estimation may be inaccurate for small arrays
or at low frequencies, because the noise components in the
observed signals are highly correlated in such cases.

3. PROPOSED METHOD

3.1. Blind Noise Decorrelation by Crystal Arrays

Let e1, e2, · · · , eM be orthonormal eigenvectors of ΦNN

and E � [e1, e2, · · · , eM ], then the elements of the vector

Ñ � EHN (8)

are uncorrelated. The transformed version of (4) is

ΦX̃X̃ = d̃d̃HφSS + ΦÑÑ , (9)

where X̃ and d̃ are defined in the same way as Ñ . Because
ΦÑÑ is diagonal, the nondiagonal elements in (9) are noise-
free, from which φSS can be obtained.
Generally, we need to know the value of ΦNN to ob-

tain E. Although possible based on Voice Activity Detection

Fig. 1. Examples of crystal arrays.

(VAD) when the target signal is speech and the noise is non-
speech, this is difficult in general. However, we have shown
that E can be obtained without knowing the value of ΦNN ,
if we use crystal arrays, a certain class of symmetrical micro-
phone arrays with crystal-like geometries (see Fig. 1) and the
noise field satisfies the following isotropy conditions [7].

• The power spectrum is independent of the observation
position.

• The cross-spectrum is independent of the orientation
between the two observation positions.

Therefore, if the noise field is isotropic, we can decorrelateN
without knowing the value of ΦNN using crystal arrays. We
refer to this technique as Blind Noise Decorrelation (BND).
For example, consider an array with microphones arrayed at
the vertices of a square and numbered cyclically, then the
noise covariance matrix is a circulant matrix

ΦNN =

⎡
⎢⎣

α β γ β
β α β γ
γ β α β
β γ β α

⎤
⎥⎦ . (10)

A corresponding matrixE is the fourth-order DFT matrix [8]

E =
1
2

⎡
⎢⎣

1 1 1 1
1 j j2 j3

1 j2 j4 j6

1 j3 j6 j9

⎤
⎥⎦ (j �

√−1). (11)

3.2. Power Spectrum Estimation

Assume that BND has been performed, then it follows from
each nondiagonal element in (9) that

φX̃mX̃n
= d̃md̃∗nφSS (m �= n). (12)

We estimate φSS from (12) for m and n such that m < n,
based on the least square method, as

φSS = �
[∑

m<n d̃∗md̃nφX̃mX̃n∑
m<n |d̃m|2|d̃n|2

]
. (13)

If estimated φSS is negative, then we reset it to zero.
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3.3. Wiener Post-filter Design

Combining the estimation of the signal power spectrum in
(13) with the estimation of the denominator proposed by Zelin-
ski [3], we design the Wiener post-filter as

Hpost =

�
[∑

m<n d̃∗md̃nφX̃mX̃n∑
m<n |d̃m|2|d̃n|2

]

1
M

M∑
m=1

φXmXm

|dm|2
. (14)

Since Hpost satisfies 0 ≤ Hpost ≤ 1 by definition, we modify
its value in (14) by

Hpost ←
{

0 (Hpost < 0)
1 (Hpost > 1)

. (15)

4. EXPERIMENTAL EVALUATION

In this section, we present results of simulated experiments to
verify the effectiveness of the proposed method. The experi-
mental conditions were as follows (see Fig. 2).

• array geometry: square
• target: speech (DOA: 60◦)
• noise: white noise or speech (DOA: 360◦

64 i, 0 ≤ i ≤ 63)
• propagation: plane wave, single-path
• sampling rate: 16kHz
• frame length: 28 samples
• shift: 24 samples
• window: Hamming

The speech data used were continuous speech data in the ATR
Japanese speech database (set B) [9]. The target speech was
extracted by the multichannel Wiener filter with the proposed
post-filter (called below the proposed method) and that with
Zelinski’s post-filter (called below the Zelinski’s method).
ΦXX in wMVDR was estimated by averaging in time XXH

over all the frames. As the matrix E for BND, the fourth-
order DFT matrix (11) was used. φX̃mX̃n

and φXmXm
in

(14) were estimated every 24 frames by averaging in time
X̃mX̃∗

n and |Xm|2. The range restriction (15) was applied
to the Zelinski’s method as well.
In Fig. 3, the noise covariance matrices before and after

BND (density plots) are shown. They were calculated by av-
eraging XXH and X̃X̃H over all the time-frequency slots.
The interferences were speech signals. It is seen that the noise
covariance matrix is almost circulant before BND and almost
diagonal after that, which shows the effectiveness of BND.
The ratio of the absolute sum of the diagonal elements to that
of all the elements increased from 37.1% to 96.3 % through
BND.
Next, we compare the accuracy of the power spectrum es-

timation for the two methods mentioned above. In Fig. 4, the
scatter graph of the true value (horizontal axis) and estimated

D

Fig. 2. The arrangement of the sources and the microphones.

Fig. 3. The density plots (absolute values) of the noise covari-
ance matrices before and after BND.

value (vertical axis) of φSS is shown. The array radius was
set at 0.015m, and the input SNR at −5.0dB. The true signal
power spectrum was calculated every 24 frames by averaging
in time |S|2. For the proposed method, the correlation coef-
ficient is 0.919, and the points lie near the line y = x. This
shows the accuracy of the estimation. On the other hand, for
the Zelinski’s method, the correlation coefficient is 0.777, and
many points lie far from the line.
Finally, we compare the noise reduction performance of

the proposed method with that of the Zelinski’s method.
Shown in Fig. 5 is the graph of the SNR enhancement (SNRE),
which is defined as the difference of the output and input
SNR, as a function of the input SNR. To show the SNR gain
achieved by the post-filtering, the result for the MVDR beam-
former without post-filtering is also shown. The array radius
was set at 0.015m to avoid the spatial aliasing. It is seen
that the proposed method gives superior SNR than the Zelin-
ski’s method. In Fig. 6, the output SNR is plotted as a func-
tion of the array radius. The input SNR was set at 0.0dB.
For small arrays, the proposed method gives superior SNR
than the Zelinski’s method, and little SNR gain is achieved
by post-filtering in the Zelinski’s method. For larger arrays,
the difference in the SNR between the two methods is small.
This result is well explained by the fact that the assumption
of the uncorrelated noise, upon which the Zelinski’s method
is based, is valid only for large arrays.
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Fig. 4. The scatter graph of the true value (horizontal axis)
and estimated value (vertical axis) of φSS .

5. CONCLUSION

We presented a novel method for implementing the multi-
channel Wiener filter for diffuse noise suppression, based on
BND using crystal arrays. Simulated experiments have shown
that 1) diffuse noise is decorrelated effectively by BND, that
2) the estimation of the signal power spectrum by the pro-
posed method is more accurate than that by the Zelinski’s
method, and that 3) the proposed method gives higher SNR
than the Zelinski’s method especially for small arrays.
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