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ABSTRACT

In this paper we present a new method for locating mul-

tiple sound sources using only a local segment of data from

a large-aperture microphone array. The result of this work

may be used directly or as an open-loop input to a track-

ing algorithm. The proposed method employs the proven-

robust steered response power using the phase transform as

a functional, agglomerative clustering, and low-cost global

optimization (stochastic region contraction). We test the al-

gorithm with five simultaneous “talkers” under very difficult

conditions in a real room but using electrical speakers instead

of human talkers to have a controlled experiment. Results are

presented and discussed.

Index Terms – Acoustic radiators, microphones, arrays,

acoustic position measurement

1. INTRODUCTION

Locating multiple talkers using microphone arrays has many

applications, such as: teleconferencing, speech data acquisi-

tion, and voice capture in adverse environments. There are

two main approaches to solve this problem. The first ap-

proach finds the time-differences of arrival (TDOA’s), or di-

rections of arrival (DOA’s) from a multitude of microphone

pairs and then estimates the source locations by using proper

clustering techniques [1, 2]. The second one uses a beam-

former to find multiple peaks of an energy-based functional,

such as the steered response power [3, 4]. Under high noise

and reverberant conditions, strong reflections of the source

signals severely affect the TDOA estimates, which create large

errors in source-location estimation [5, 6]. Hence, the second

approach is more robust under such conditions, and is now

more feasible computationally given today’s more powerful

processors and substantive algorithm improvements [7, 8].

In general, localization of multiple sources is done using a

‘closed loop’ tracking algorithm, which employs knowledge

of prior source locations. Tracking can be done using particle

filtering [3, 9] or Kalman filtering [10]. On the other hand, an

‘open loop’ problem is where multiple source locations are

estimated based on current information (a single frame) only,

without tracking. If of sufficient quality, these ‘open loop’

estimates may be used directly or as initialization for tracking

systems.

In this paper, we propose a novel ‘open loop’ location

method for multiple sources. This method uses the proven-

robust steered response power using the phase transform func-

tional (SRP-PHAT) with agglomerative clustering (AC)[11],

and the low-cost global optimization algorithm, stochastic re-

gion contraction (SRC)[7]. SRP-PHAT has been used for es-

timating two [3] or more simultaneous sources [12] using a

small circular array with no range estimates, and averaging

over frames. Our method, which has been developed for a

large-aperture microphone array, does range estimation, uses

a single frame of data, and works for more than 2 sources.

Assume a set of K point sources are active in data frame

n at spatially separated locations �Qn(k), k ∈ [1,K]. Pn(�x),
is the real-valued SRP-PHAT functional for the 3-D spatial

vector �x obtained by steering a delay-and-sum beamformer.

It has been fully described in [6, 7]. A typical slice for Pn(�x)
at a fixed height y = constant is shown in Fig. 1 for 5 talk-

ers. The hypothesis is that we can isolate exactly K spatially

separated peaks of Pn(�x) at locations �λn(k) such that the set
�λ is the same as the true source location set �Q. The basic

components of our algorithm for determining �λn(k) are:

1. Evaluate Pn(�x) on a large set of R randomly selected

points, keeping the highest N of them.

2. Agglomerative cluster these N points, obtaining an es-

timate of K and the K cluster volumes.

3. Apply stochastic region contraction on each volume to

find �λn(k), 1 ≤ k ≤ K.

2. AGGLOMERATIVE CLUSTERING (AC)
AC is chosen over the widely-used k-means clustering be-

cause it does not require a priori knowledge of the number of

clusters, i.e., number of sources, K. It is also efficient for the

small data set sizes that we use in this problem.
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Fig. 1. SRP-PHAT 3D illustration for 5 talkers

Denote i as the iteration index. For iteration i, cluster

C(i)(k) has |C(i)(k)| points, where k is the cluster index, and

|.| denotes the cluster cardinality. An assigned point from

the vector space of this cluster is denoted as �p
(i)
k (u), where

1 ≤ u ≤ |C(i)(k)|. Also, ||.|| denotes the Euclidean distance,

and dt is the Euclidean threshold distance that is chosen a

priori. In our algorithm, dt is set to 50 cm, the typical mini-

mum distance that separates two human sources in a real life

situation. The AC algorithm for an N -point data set is:

1. Initialize: i = 0. Start with N clusters, one for each

point: C(0)(k), k = 1, .., N . Select the linkage param-

eter L (‘average’, ‘simple’ or ‘complete’).

2. Calculate: distance d
(i)
mn between all pairs of clusters

C(i)(m) and C(i)(n).
IF L =‘average’:

d(i)
mn = mean

u,v
||�p(i)

m (u) − �p(i)
n (v)||∀m,n

IF L =‘simple’:

d(i)
mn = min

u,v
||�p(i)

m (u) − �p(i)
n (v)||∀m,n

IF L =‘complete’:

d(i)
mn = max

u,v
||�p(i)

m (u) − �p(i)
n (v)||∀m, n

3. Test: IF d
(i)
mn ≥ dt ∀m, n:

STOP. KEEP RESULT.

4. Merge: C(i)(k1) and C(i)(k2) such that:

d
(i)
k1k2

= min
m,n

(d(i)
mn)

5. Iterate: i = i + 1. GO TO STEP 2.

3. AN ALGORITHM FOR MULTIPLE SOURCE
LOCATION

Let V0 be the boundary vector of the rectangular search re-

gion with volume Vroom containing the sources. SRC’s param-

eters depend considerably on the environment’s conditions,

such as the room dimensions. Thus the algorithm’s parame-

ters, i.e., R = 15000 and N = 500 are determined empiri-

cally and shown in Sec.4. The algorithm is:

1. Evaluate: R random points in V0.

2. Select: The best N << R points.

3. Cluster: N points into P0 clusters using AC with

L =‘average’.

4. Determine: P0 centroids: �cj ≡ mean(�pj(u)),
for all �pj(u) ∈ C(j), j = 1, ..., P0

5. Calculate: P0 × P0 Mahalanobis distances, μij ,

between every �ci and cluster C(j).

6. Test: WHILE μij ≤ μthres∀i �= j and |C(i)| �= 0:

Merge C(j) to C(i); Set |C(j)| = 0. Achieve P1 ≤ P0

clusters.

7. Apply SRC: on each C(k), 1 ≤ k ≤ P1, to achieve

location estimates �xk with SRP values Ek. These esti-

mates form the set P2 ≤ P1 as non-converging clusters

are terminated early.

8. Cluster: P2 estimates using AC with L =‘simple’.
Achieve P3 ≤ P2 clusters.

9. Select: The highest energy point �x∗
k in each cluster of

the P3 clusters. Keep only those for which E�x∗
k

≥
Lconf, where Lconf is a sensible SRP-PHAT threshold

value.

10. Final output: the set P4 = {�x∗
k, E�x∗

k
}, P4 ≤ P3.

Notes:

• |.| denotes cardinality of the set, and E denotes the energy or

SRP-PHAT value.

• In Step 5, it is required that C(j) has at least 2 points in order

for the Mahalanobis distance to make sense, hence μij of all

C(j) such that |C(j)| = 1 are set to infinity. In Step 6,

μthres = 6 (standard deviations) indicates the threshold that a

point assuredly belongs to the cluster.

• In Step 7, the rectangular boundary of the volume containing

cluster C(i) for which SRC is applied is defined as follows:
�Blower ≡ [xmin(�pi(n)) ymin(�pi(n)) zmin(�pi(n))],
�Bupper ≡ [xmax(�pi(n)) ymax(�pi(n)) zmax(�pi(n))]
∀�pi(n) ∈ C(i).

• The parameters for SRC used in Step 7 are: J0 = 1000, n =
100 [7].

We select the Mahalanobis distance because the clusters of

high energy points appear to be spreading in an elliptical shape.

Their principle axes (eigenvectors of the covariance matrices

of the data) are along the direct paths from the sources to the

microphones that we use. In Figure 2, we illustrate the clus-

ters for 5 talkers using a 2D-plot in which height in the room

has been projected onto a plane. The Mahalanobis distance
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describes the correlation among data points in the clusters bet-

ter than the Euclidean distance. However, the Mahalanobis

distance only makes sense when considering the relationship

between a group of points with a single point or with another

group. Therefore, we need some initial clusters before us-

ing Mahalanobis distance. AC with the Euclidean distances

shown in Fig. 2 (Step 3) provides the efficient preliminary

clustering.
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Fig. 2. Clusters for 5 talkers shown in 2D in which height(y)

dimension has been projected onto a plane.

Figure 3 shows the final clusters after merging the clusters

of Fig. 2 to have the Mahalanobis distance less than μthres.

SRC is then applied on each of these clusters to give its global

maximum.
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Fig. 3. Clusters after merging using the Mahalanobis distance

(Step 6) and applying SRC(Step 7).

4. EXPERIMENTS
4.1. Experimental conditions

The system, room with a T60 = 0.45s, and a focal volume,

Vroom =4m × 1m × 6m that we used in our experiments has

been described in [6]. Ten-second recordings (wav files) of

five native American English talkers (1 female and 4 males)

were individually recorded with close-talking microphones.

For the testing, these individual recordings were played si-

multaneously by Adobe Audition through five Advent AV009

speakers, each approximately facing the 24 locator micro-

phones as shown in Figure 4 with the average distances and

SNR’s indicated.

Note that the SNR’s are for background noise only and

just indicate the difficulty of the environment. In reality, the

direct signal is also corrupted by intense reverberation and

interference from other talkers and their reverberation as well.

Frames of 102.4ms, advancing each 25.6ms, and a sampling
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Fig. 4. Top view of the array, showing source locations and

panels. This experiment used 24 microphones of the 128 on

panels H, I, J, K. The arrows indicate the orientation of the

talkers and the SNR’s are for background noise only.

rate of 20 KHz were the conditions for testing. A location

estimate was considered an error if it were either off by more

than 5cm in x or z or 10cm in y, the vertical dimension.

4.2. Determination of parameters

A preliminary experiment was used to calculate the param-

eters R and N . From the data, we determined that
Vpeak

Vroom
≈

5 × 10−4. Hence, from Table 1 in [7], R = 15000 will err

by missing the peak volume less than 0.1% of the time. Also,

an N = 500 gave a sufficient number of data points for clus-

ters at source locations, and eliminated a several “noise” out-

liers. In Fig. 5, we show the spread of points for the full

grid-search (a) and for various choices of R and N (b → i). A

value of R < 15000 (Fig. 5b–c) resulted in a spread of data

points over a large area, which means very poor cluster infor-

mation. A value of N < 500 (Fig. 5f–g) could lead to the

case of missing data points (for T3). Hence, R = 15000 and

N = 500 were the minimum values to provide useful cluster

information when compared to the 2D energy map given by

the SRP-PHAT straight grid-search.
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Fig. 5. 2D energy map given by grid-search (a) and for dif-

ferent values of R and N for the 5 talker case (b → i)

4.3. Experiments

To set a “truth” baseline, we computed the energy in each

frame for the individual-talker, clean recordings. The his-

tograms are shown in Fig. 6. Silence frames were all at about

67dB, and the loudest frames were 45dB above silence. We

expected talker-frames having relatively low energy to be the

most difficult for the algorithm, so we were able to use these
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energy-data values to discriminate talker-frames by selecting

a threshold, Θ, on absolute energy.
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Fig. 6. Absolute energy (dB) histogram of 5 talkers over 300

frames.

As the experiment, we compared the estimates given by

the algorithm on the composite data against the “truth” base-

line with various settings of Θ. We also used the SRP-PHAT

functional values as the confidence level, Lconf. An estimate

was made only when its SRP value was greater than or equal

to the preset Lconf. The variation in the number of estimates

made as a function of conf is shown in Fig. 7. Clearly, we ex-

pect the percentage of correct estimates to increase as Lconf is

larger.

In every frame, an estimate was counted as “correct” if it

matched a “truth” baseline location, and as “extra” if it did

not. A “missed estimate” is counted if there was any talker

in the baseline not detected by the algorithm. Fig. 8 shows

these statistics for different values of Θ at Lconf = 6, and Fig.

9 shows them for Lconf = 8. As the confidence level, Lconf,

decreased, more estimates were made and, hence, both the

percent correct and extra increased while the percent missed

decreased. On the other hand, when Lconf was set higher,

fewer estimates were compared, and these expectations are

observed in the measured performance. Also, when the en-

ergy level of the speech was high (≥ 100dB), the algorithm

performed better.
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Fig. 8. Percent correct, extra, and missed for different values

of Θ and Lconf = 6 over all frames. A performance line at

90dB is highlighted.

5. CONCLUSION
We have presented an open-loop, simultaneous-talker, location-

estimation method using SRP-PHAT with SRC and AC. We
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Fig. 9. Percent correct, extra, and missed for Lconf = 8.

have tested the new method under extremely adverse, real

conditions of reverberation, background noise and, especially,

loud, interfering sources. The experiments show, given we

count only talkers in frames having energy 23dB above the

background using the close-talking, original clean-speech data,

over 60% of the talkers are found correctly, and about 20 %

“extra” estimates are made (see Fig. 8). While there is still

much to be done, we believe the performance at this level

would work very well as input to a complete tracking algo-

rithm.
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