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ABSTRACT

The extension of particle filtering techniques to the multiple speaker
case is difficult as two distinct problems must now be addressed.
Firstly, the active speakers must be identified and their locations es-
timated, requiring the use of multi-dimensional likelihoods, and then
each speaker must be correctly associated with his corresponding lo-
cation. In this paper we propose a multi-speaker tracking algorithm
in which the number of active speakers is determined by estimating
the profile of the noise-plus-reverberation covariance matrix eigen-
values. The multi-dimensional likelihoods are then decoupled using
the Expectation Maximization (EM) algorithm. The tracking accu-
racy is improved by the inclusion of a pause detection step and esti-
mation of the noise-plus-interference covariance matrix. The results
show the benefits of the proposed methods under difficult tracking
situations.

Index Terms— Particle filtering algorithms, Source number es-
timation, Noise-plus-reverberation covariance matrix estimation, Mul-
tiple source tracking, Microphone arrays.

1. INTRODUCTION

The ability to track the locations of a varying number of speakers in
the presence of background noise and reverberation is of great inter-
est due to the vast number of potential applications. Particle filtering
offers a robust method of tracking moving sources by recursively up-
dating the location estimates using a two-step process of prediction
and filtering.

While various particle filtering methods have been applied to
the problem of tracking a single speaker e.g. [1, 2], the extension
of these techniques to the case of multiple speakers is not straight-
forward. This is because in the situation of multiple speakers two
distinct problems have to be solved, the estimation of the locations,
involving multi-dimensional likelihoods, and also the association of
each estimate with the correct source track. Furthermore, as one or
more of the speakers may not be speaking it is also necessary to
estimate which speakers are “active” at a given time.

Recently a method for tracking multiple sources using audio sig-
nals only was proposed in [3]. In this case the computational com-
plexity due to the multiple sources is reduced by exploiting the signal
separation characteristics of the Expectation Maximization (EM) al-
gorithm to estimate the particle filter weights. This method was then
extended in [4] in order to avoid confusion of the source tracks in sit-
uations where one of the sources is inactive for a significant lengths
of time.

However, in more difficult tracking situations when there are
more than two sources speaking intermittantly the methods proposed
in [3] and [4] can no longer accurately track the speakers. This fail-
ure can be partly attributed to the fact that in this situation it is no

longer sufficient to randomly assign the speech activity status. In-
stead a more accurate method of distinguishing the active sources is
needed.

In this paper we address this problem and apply the resulting
method to a difficult tracking scenario using live recordings of mul-
tiple moving speakers. Firstly the number of active sources is es-
timated directly from the received data using an extension of the
method proposed in [5]. This method is based on predicting the
profile of the noise-plus-reverberation covariance matrix eigenval-
ues and is particularly well suited to situations where a small num-
ber of data samples is available, as is the case when tracking mov-
ing sources. The inclusion of a pause detection step also allows us
to continuously update the estimate of the background noise-plus-
reverberation matrix.

2. PROBLEM FORMULATION

We consider the model of an array of M microphones located in a
sound field generated by Na active sources, which are assumed to
be non-coherent.

Then, taking the short-term Fourier transform of the signals re-
ceived by the microphones at time t, we obtain the following data
model:

y (ω, t) = A (ω, t) s (ω, t) + n (ω, t) , (1)
where ω is the frequency under consideration. In what follows we
omit the frequency index for the sake of simplifying the notation.
A (ω, T ) is the matrix of the L direct path transfer function vectors:

A = [a (θ1) , . . . , a (θL)] , (2)
with θl, l = 1, . . . , Na representing the 2D directions of the Na

sources. s (t) = [S1 (t) , . . . , SNa
(t)]T is the source spectrum vec-

tor, and n (t) = [N1 (t) , . . . , NM (t)] is the background noise spec-
trum vector. The signal and noise covariance matrices are defined
respectively as:

Rss = E
h
s (t) sH (t)

i
,

Rnn = E
h
n (t)nH (t)

i
,

where the superscript H denotes the conjugate transpose of the ma-
trix.

2.1. Particle Filtering Algorithm

Using the framework of Bayesian hidden state sequence estimation,
the particle filtering algorithm estimates the locations (θl) of moving
targets by combining the information received from the observations
with any available prior knowledge of the source transition model.
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The hidden variable vector is defined as [6]:

χ (t) =
ˆ
Na (t) , χ1 (t) , ..., χNa(t) (t)

˜
, (3)

where Na (t) is the number of active sources, and the required pa-
rameters of the ith target are defined as χl (t) = (θl, sl (t)). θl

defines the location as in (2), and sl (t) is a Boolean variable which
denotes whether the ith source is switched on/off. The observation
variables, Z (t), are composed of the audio signals z (t) received by
the microphone array.

The posterior probability distribution P
`
χ1|T |Z1|T

´
specifies

the likelihood of each possible χ1|T given the observations Z (t).
The estimated hidden variable vector, bχ1|T , should then be selected
so as to maximize this distribution.

Unfortunately, the distribution P
`
χ1|T |Z1|T

´
is not available.

However, under certain non-restrictive assumptions, the required dis-
tribution can instead be approximated in accordance with Bayes’
theorem using the measurement likelihood P (Z (t) |χ (t)), and the
state transition probability, P (χ (t) , χ (t− 1))[6]:

P
`
χ1|T |Z1|T

´
∝

NaY
l=1

P (Z (t) |χ (t)) P (χ (t) , χ (t− 1)), (4)

As no closed-form solution exists for (4) we approximate this
distribution at a number of discrete points - or particles. Then, ac-
cording to the central limit theorem as the number of particles in-
creases towards infinity this approximation approaches the true pos-
terior density.

The basic particle filtering framework can then be applied as a
two-step prediction and filtering process. The prediction step con-
sists of propagating the particles according to the motion model. In
the method presented here we use a random walk motion model.

In the filtering step the propagated particles are weighted ac-
cording to the measurement likelihood corresponding to this particle
location. The particles are then re-sampled according to these im-
portance weights.

The final estimate of the source locations can then be found by
taking the mean of the re-sampled particles.

bχ =
1

Np

NpX
i=1

χ
i
, (5)

where Np is the total number of particles and χi is the parameter
vector associated with the ith particle.

3. ESTIMATING THE NUMBER OF ACTIVE SOURCES

From equation (3) it can be seen that in the case of a varying num-
ber of sources it is necessary to estimateNa (t) the number of active
sources as well as their respective locations. There are two main ap-
proaches to this problem. In the first case the particle filter can be
applied to the joint problem of estimating and tracking the sources
present. However this approach leads to high computational com-
plexity. Therefore in this paper we instead use the alternative ap-
proach of firstly estimating the number of sources present and then
using the particle filter to perform the tracking.

The MDL [7] and AIC [8] criteria are traditionally used for
source number estimation. However, both these approaches are based
on an assumption of white noise and are known to consistently over-
estimate the number of sources present when reverberation is present.
In what follows we use the method proposed in [9] extended to cover

reverberant environments as detailed in [5]. This method is based on
the eigenvalue decomposition of the sample covariance matrix of the
received signal:

Ryy (t) =
1

N

NX
n=1

y (t) y
H (t), (6)

where N is the number of data frames the covariance matrix is av-
eraged over. The number of eigenvalues corresponding to the signal
subspace, the so-called signal eigenvalues, is equal to the number of
sources present. Consequently the source number estimation prob-
lem then becomes one of distinguishing between the signal and noise
eigenvalues.

Under the proposed scheme the smallest observed eigenvalue is
assumed to be a noise eigenvalue, corresponding to a noise subspace
dimension of P = 1. Then letting P = P + 1 for each subse-
quent step until P = M − 1, the predicted profile of the noise-only
eigenvalues is found recursively according to an exponential profile
as detailed in [9].

In situations where at least one source is present the predicted
noise-eigenvalues are then corrected to account for the presence of
a reverberant tail [5]. The relative differences between the predicted
noise eigenvalues,

h
λ̂m, . . . λ̂M

i
and [λm, . . . λM ] the observed eigen-

values, are found from:

rm =
λm − λ̂m

λ̂m

, m = 1, . . . , M − 1. (7)

rm is then compared to a threshold value ηm in order to determine
if and when a break from the noise-only profile has occurred.

4. ESTIMATION OF MEASUREMENT LIKELIHOOD
USING EXPECTATIONMAXIMIZATION

When tracking NT sources the measurement likelihood distribution
is anNT -dimensional distribution and accordingly the computational
complexity grows exponentially as the number of sources increases.
A solution to this complexity problem proposed in [3] is the use of
the Expectation Maximization (EM) algorithm. The main feature
of the EM algorithm is that it decouples the NT -dimensional likeli-
hood distribution into NT 1-dimensional distributions which can be
calculated in parallel.This decoupling of the sources is achieved by
decomposing the observed microphone signals into ‘complete data’
vectors which correspond to the signal due to each source:

y (t) =

NaX
l=1

xl (t) = Hx (t) , (8)

where
xl (t) = a (θl)Sl (t) + nl (t)

x (t) =
h
x

T
1 (t) , . . . , x

T
Na (t)

i
;

H = [I, . . . , I] ;

and the matrix I denotes the identity matrix. nl (t) an arbitrary de-
composition of the noise vector, which must satisfyn (t) =

PNa

l=1 nl (t)
andRnl = E [nl (t)nl (t)].

The likelihood of the complete data is then given by:

Lxl (θl, γl|Xl) = Ψxl exp

„
−

1

2
tr

ˆ
CxlK

−1
xl

˜«
, (9)
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where:
Ψxl = (2π)−MN [detKxl]

−N/2 ;

Kxl = γla (θl) a
H (θl) + Rnl, (10)

and the sample covariance matrix of the complete data Xl is given
by:

Cxl =
1

N

NX
n=1

xl (n)xH
l (n) . (11)

As the complete data is not knownCxl cannot be found directly
and must instead be estimated using the following equations as in
the Expectation step of the EM algorithm:

Cxl = E
h
Cxl|Cy ; bKy

i
= bKxl − bKxl

“ bKy

”−1 bKxl + bKxl

“ bKy

”−1

Cy

“ bKy

”−1 bKxl,

(12)
with:

bKy =

NaX
l=1

bKxl (13)

bKxl = bγla
“bθl

”
a

H
“bθl

”
+ bRnl. (14)

Now, the importance weight for the particle filtering expression
in (4) is calculated using Cxl as defined in (12) and bK−1

xl , wherebKxl is defined in (14).

L
`
yt|t+N |χ (t)

´
:= exp

„
−

1

2
tr

h
C

p
xl

bK−1
xl

i«
. (15)

As this expression defines the likelihood at an individual fre-
quency, the overall measurement likelihood is then given by:

P
`
zt|t+N |χ (t)

´
=

Y
ω

L
`
yt|t+N (ω) |χ (t)

´
. (16)

5. NOISE-PLUS-REVERBERATION COVARIANCE
ESTIMATION

In order to accurately model the received data the noise covariance
matrix estimate bRnn should take into account both background noise
and reverberation. This estimate must also be continuously updated
to reflect the non-stationarity of the background noise. The sig-
nificant improvement in the tracking results when bRnn is contin-
uously estimated from the received data instead of assuming station-
ary white noise were previously demonstrated in [4].

In order to estimate the noise-plus-covariance matrix we firstly
apply a pause detection step on a frequency-by-frequency basis us-
ing the noise characterization method proposed in [10]. In this step
a noise threshold is applied to each frequency subband in order to
determine which subbands contain signal components. The noise
threshold η is calculated as:

η (ω, k) = βE (ω, k − 1) ; (17)

where k is the block index, (withN frames in a block). E (ω, k − 1)
is the energy of the previous noise estimate at the given frequency ω,
and β is a constant value lying between 1.5 and 2.5.

Then, if:

E (ω, k) > η (ω, k) (18)

the frequency value ω is determined to contain signal components,
and is included in (16) in order to find the measurement likelihood.

Meanwhile, if the frequency component is determined to con-
tain no signal component, the noise-plus-reverberation covariance
matrix estimate for this frequency can then be found. The resulting
covariance estimate is then smoothed over time:

Rnn (ω) =
1

Q

QX
q=1

Rnn (q, ω) (19)

where Q is the number of previous values used and is selected to
match the statistics of the background noise.

6. DATA ASSOCIATION

The problem of data association - i.e. association of each location
estimate with its corresponding source, arises when or more of the
sources is inactive. In this paper we make a decision on which source
or sources are active by comparing the measurement likelihoods for
each source.

Pl

`
zt|t+N |χ (t)

´
=

NpY
i=1

Pl

“
zt|t+N |χ

i (t)
”

(20)

The active sources are then estimated to be the sources result-
ing in the Na highest values of Pl

`
zt|t+N |χ (t)

´
. Only the active

sources are then used to calculate the measurement likelihood, as
discussed in section 2.1.

The locations of the inactive sources are estimated from the prop-
agation model. By continuing to estimate the location of the inactive
sources in this manner the correct location can be estimated as soon
as the source becomes active once more, however the location esti-
mates of the inactive sources cannot be expected to be very accurate.
For this reason we distinguish between active and total errors in the
experimental results as seen in section 7.

7. EXPERIMENTAL SETUP AND RESULTS

The proposed method was tested using recordings taken in a medium
sized meeting room with a reverberation time of 500ms. Four peo-
ple then moved around the room, while speaking intermittently.

The speech was recorded using a uniform circular array of 8mi-
crophones which was placed at ceiling height, and the distance be-
tween the microphone array and the speakers was sufficient to ensure
far-field conditions. The recorded signals were divided into frames
of length 32ms, with an averaging interval of N = 9, or approxi-
mately 0.1s.

The true trajectory of the speakers was found using the Zone
Positioning System ZPS-3D by Furukawa Co.,Ltd. and is depicted
by the dashed lines in fig 1. Using the Zone Positioning System a
badge is pinned on the chest of each of the speakers and the location
of the badge is then tracked.

In fig 1 the layout for the experiments is shown. From the Root
Mean Square Error (RMSE) values shown in tables 1 it can be seen
that the estimation of the background noise from the data improves
the performance compared to the case where white background noise
is assumed. From table 2 it can be seen that the inclusion of the
pause detection and active source number estimation steps also lead
to significant reduction in the RMSE values.
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Fig. 1. Experimental layout. The four people are denoted P1, P2,
P3, P4, and the dashed line traces their movement. The microphone
array is set at ceiling height.

White Noise Estimated Noise
RMSE RMSE

Source 1 1.49 m 0.67 m

Source 2 1.37 m 0.71 m

Source 3 1.50 m 1.04 m

Source 3 1.29 m 1.12 m

Average Over 1.41 m 0.89 m
4 Sources

Table 1. Root Mean Square Error (RMSE) values when all the
sources are assumed to be active at all times.

8. CONCLUSION

This paper proposes a particle filtering scheme for tracking multi-
ple speakers based on the approach proposed in [3]. This method
was extended to include a pre-tracking active source number esti-
mation step which is robust to the presence of reverberation. The
results show that the proposed method can successfully track multi-
ple sources even in difficult scenarios.
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