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ABSTRACT

Spherical microphone arrays offer a number of attractive properties
such as direction-independent acoustic behavior and ability to re-
construct the sound eld in the vicinity of the array. Such ability
is necessary in applications such as ambisonics and recreating au-
ditory environment over headphones. We compare the performance
of two scene reconstruction algorithms – one based on least-squares
tting the observed potentials and another based on computing the

far- eld signature function directly from the microphone measure-
ments. A number of features important for the design and operation
of spherical microphone arrays in real applications are revealed. Re-
sults indicate that it is possible to reconstruct the sound scene up to
order p with p2 microphones.

Index Terms— Acoustic elds, spherical microphone arrays,
array signal processing, acoustic position measurement.

1. INTRODUCTION
Spherical microphone arrays offer a number of properties attractive
for the development of the acoustic and audio systems with 3-D lis-
tening capability. Due to 3-D symmetry of the array, the array beam-
forming pattern is independent of the steering direction and the spa-
tial structure of the acoustic eld can be captured without distortion.
The spherical con guration leads naturally to an elegant mathemati-
cal framework based on elementary solutions of Helmholtz equation
in spherical coordinates [1] [2] [3]. Accordingly, spherical arrays are
being used in real-time beamforming [4], in capturing of the spatial
acoustic eld [5], and in other applications.

Recently there has been an interest in representing the acoustic
eld in the array neighborhood over the plane-wave and spheri-

cal wavefunction bases. Plane-wave decompositions are useful in
many application scenarios, including source localization and beam-
forming [4], capture and individualized HRTF-based reproduction
of acoustic scenes [5], etc. Ref. [6] presented a framework for
performing decomposition using spherical convolution under the
assumption of a continuous pressure-sensitive microphone array
surface. In case of discrete microphones positioned on the sphere
surface this assumption is invalid, and a quadrature formulae that
preserves the orthonormality of spherical harmonics should be used
as in [2]. Quadrature based on Fliege points [8] was presented and
evaluated and two plane-wave decomposition algorithms were de-
veloped in [7], The current work analyzes the performance of those
algorithms under realistic operating conditions – nite number of
microphones, environmental noise, and aliasing effects – using both
synthetic and experimental data.

2. BACKGROUND
In a space with no acoustic sources, acoustic wave propagation at a
wavenumber k is governed by the Helmholtz equation [7]

2 (k, r) + k2 (k, r) = 0, (1)
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where (k, r) is the Fourier transform of the pressure. Solutions
of the Helmholtz equation can be expanded as a series of regular
Rmn (k, r) and singular Smn (k, r) spherical basis functions (see [7]):

Rmn (k, r) = jn(kr)Y
m
n ( , ); S

m
n (k, r) = hn(kr)Y

m
n ( , ),

(2)
where (r, , ) are spherical coordinates of the radius vector r,
jn(kr) and hn(kr) are the spherical Bessel and Hankel functions,
and Y m

n ( , ) are the orthonormal spherical harmonics.
Any regular acoustic eld (k, r) near a point r in a region

that does not contain sources can be represented as a sum of regular
functions with some complex coef cients Cmn (k) as

(k, r) =

p 1X
n=0

nX
m= n

Cmn (k)R
m
n (k, r r )+ (p, k|r r |). (3)

To achieve negligible truncation error it is suf cient to set [9]

p = (ekD 1)/2. (4)

3. SOLVING THE ACOUSTIC SCENE
The potential (s0, s) created at point s0 on the surface of the sound-
hard sphere of radius a by plane wave eiks·r propagating in the di-
rection s is given by

(k, s0, s) =
i

(ka)2

X
n=0

in(2n+ 1)Pn(s
0 · s)

h0n(ka)
, (5)

where Pn(s0 · s) is the Legendre polynomial of degree n and h0(ka)
is the derivative of the spherical Hankel function. Assume that Li
microphones are placed at directions s0i comprising an “M-grid”.
The goal is to measure the potentials (k, s0i) at those microphones
and to recover the signature function (k, sj) over Lj directions sj
comprising an “S-grid”. Two algorithms were introduced in [7].

K-method: This method is essentially based on least-squares
tting of the observed potentials with the plane-wave magnitudes
(sj). Using equation (5), one can construct a linear system for
(sj) as follows. De ne kernelK(s0i, sj):

K(s0i, sj) =
i

(ka)2

p 1X
n=0

in(2n+ 1)Pn(s
0 · s)

h0n(ka)
(6)

Then, due to linearity of the system, the following equation holds for
each direction s0i:

(s0i) =
LjX
j=1

K(s0i, sj) (sj). (7)

Denote by the Li × 1 vector of measured (s0i) values, byK the
Li ×Lj matrix of computedK(s0i, sj) values, and by the Lj × 1
vector of unknown (sj). The system then becomes

= K . (8)
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This system is underdetermined whenLj > Li; overdetermined and
solved for in least squares sense when Lj < Li, obtaining best-
tting set of (sj); and has a unique solution when Lj = Li.
M-method: It is also possible to explicitly compute from

without requiring matrix inversion and for any number of directions
in S-grid. The coef cients Cmn can be computed as

Cmn = i(ka)2h0n(ka)
Z
Su

(s0)Y m
n (s0)dS(s0) (9)

(see [7] for derivation). The expression for (s) then can be written:

(s) = i
(ka)2

4

p 1X
n=0

(2n+1)i nh0n(ka)
Z
Su

(s0)Pn(s
0·s)dS(s0)

(10)
using addition theorem for the spherical harmonics. In the dis-
crete case the integral is replaced by quadrature over points s0i with
weights w

0
i to obtain kernelM(sj , s0i):

M(sj , s
0
i) = i

(ka)2

4

p 1X
n=0

(2n+ 1)i nh0n(ka)Pn(sj · s0i). (11)

Then, one can form matrixM of size Lj ×Li and nd directly as
= M ˜ , where ˜ is an Li × 1 vector with values w

0
j (s0i). No

linear system solution is needed.
Hemispherical Array: The above two equations can be adapted

to the case of a hemispherical array [4]. Assume that an acoustic
source is placed on one side of an in nite sound-hard plane. By
the acoustic image principle [4], the potential h(s

0, s) created at
point s0 is given by summing up potentials due to two (original and
re ected) plane waves given by equation (5):

h(k, s
0, s) = (k, s0, s) + (k, s0, s̃), (12)

where s̃ is s re ected in the array base plane Therefore, the kernel
K(s0i, sj) should be replaced with the kernelKh(s

0
i, sj):

Kh(s
0
i, sj) = K(s

0
i, sj) +K(s

0
i, s̃j), (13)

In addition, the S-grid should cover only the upper hemisphere (the
other one contains image sources). The M-method requires no mod-
i cations for use with the hemispherical array.

Observations: 1) The K-kernel has h0n(ka) in the denominator,
whereas the M-kernel has it in the numerator (recall that the function
h0n(ka) grows exponentially when n > ka). It follows that the M-
method is expected to be sensitive to the correct choice of p and at
high p to the measurement noise. 2) Low-frequency acoustic waves
create very small differences in potentials at different microphones,
which could lead to poor conditioning of theK matrix.

4. SIMULATION SETUP
Simulation of plane-wave decomposition with a spherical micro-
phone array (a = 0.106m) was performed. The M-grid was set
to be 64-point Fliege grid (“64F”) [7] [8]. For each frequency (0.5
through 6 kHz), each source direction from a list of 1024 random
directions, and each noise variance (0, 0.5, and 1.0), the poten-
tials at microphone locations were computed using equation (5) with
p = pm. Then, each potential was corrupted by Gaussian noise with
zero mean and given variance, and either K-method or M-method
was applied to solve for (s) over the S-grid using p = ps. In the
plots, pm and ps are given in terms of p computed as prescribed by
equation (4). The direction in S-grid with the largest magnitude of
(s) was taken to be the detected direction of the source. The error

Fig. 1. Spherical (left) and hemispherical (right) microphone arrays.

measure was the angular difference, in radians, between the “true”
and detected source directions, averaged over 1024 source directions
for each frequency, each noise variance, and each method. S-grids
used were “64F” and “49F”.

5. EXPERIMENTAL SETUP
The experiments were performed in a large of ce room. Two test
signals played via typical computer speaker were used: a continuous
sine wave and a 2.46 ms long upsweep (chirp) signal. Microphone
signals were recorded via two 32-channel NI PCI-6071E data ac-
quisition boards. The analog outputs and inputs of both boards were
synchronized to run off a common clock to allow for time averaging.

Spherical array experiment: The 60-microphone spherical ar-
ray (shown in Figure 1), made out of a hollow plastic lamp shade
of 0.101 m radius, was placed in the center of the room on a tripod.
The microphone arrangement followed 64-point Fliege grid [8] with
nodes 12, 24, 29, and 37 removed, forming a “60F” grid. The spa-
tial aliasing frequency for the array is about 3.85 kHz. Four random
positions in the room, all at a distance of about 1.5 m from the ar-
ray, were chosen to place the source. A 2 s recording was done for
each of the sine wave signals. The chirp signal was time-averaged
over 10 repetitions with one-second pauses to minimize reverberant
noise. The recorded signal was then windowed with 5.0 ms rectan-
gular or Hann window and the potentials at each microphone were
computed, normalized, and used as inputs to the two solution meth-
ods. The direction with the largest (s)magnitude in the S-grid was
taken to be the detected source direction. Two S-grids were used:
“49F” and “60F”.

Hemispherical array experiment: The 64-microphone hemi-
spherical array (shown in Figure 1), made out of half of a bowling
ball of 0.109 m radius, was mounted in the center of a circular table
of 0.457 m radius. The M-grid for the array, referred to as “64H”,
was obtained as described in [4]. The spatial aliasing frequency for
the array is about 4.66 kHz. The rest of the experimental setup is
the same as for the spherical array experiment. Two S-grids cover-
ing the upper hemisphere were used. The rst S-grid was the “64H”
grid and the second S-grid was the 121-point Fliege grid modi ed to
remove all points having negative z, resulting in a 62-point “62H”
grid.

6. RESULTS
6.1. Simulation results
In all plots throughout the paper, the M-grid and S-grid used are
annotated in the plot, and the K-method and M-method errors are
shown in dashed and dotted lines, respectively. For each method,
three lines shown correspond to noise variances of 0, 0.5, and 1.0. In
all plots, higher noise variance causes higher error; therefore, these
lines are not annotated separately.

Figure 2 shows the error plots obtained with pm = ps = p
(i.e., using the p prescribed by equation (4) both for computing the
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Fig. 2. Simulation, pm = ps = p . In this and all other plots, K-
method (M-method) error is shown in dashed (dotted, respectively)
line, and M-grid and S-grid used are annotated in the plot.

Fig. 3. Simulation, pm = p , ps = 7
8
p .

eld at the array and for solving this eld). The error is always pos-
itive due to the discrete grid nature. Interestingly, for the 64F S-grid
M-method shows good behavior for up to 3 kHz, whereas K-method
does exactly the opposite. When the frequency is increased beyond
the spatial aliasing limit (above approximately 4 kHz), the K-method
performance gracefully degrades. For the 49F S-grid, the M-method
shows the same behavior (because it computes (s) directly from
(s0i)) and the K-method operating range starts at slightly lower fre-

quency. No signi cant differences are observed for different noise
values. That means that noise with magnitude comparable to the
signal does not signi cantly interfere with localization.

In light of Observation 1 in Section 3, the next experiment was
performed with ps decreased compared to p . Figure 3 shows the er-
ror plots obtained for pm = p and ps = 7

8p . The plots show that
the M-kernel instability problem is successfully solved by decreas-
ing ps – the M-method is now operating up to the spatial frequency
limit and the error increases very gradually above this limit. How-
ever, the K-method operation range is decreased.

Analysis of matrix K (equation (8)) shows that it is indeed
poorly conditioned in the low frequency region where the K-method
shows high localization error. Therefore, a regularization term was
added to the LSE solution in an attempt to improve algorithm’s
performance:

KT = (KTK + I) , (14)

where I is the identity matrix and is the regularization constant.
Figure 4 shows obtained error plots with pm = ps = p and =
10 4; inclusion of the regularization term totally removed poor lo-
calization performance at low frequencies, and the K-method range

Fig. 4. Simulation, pm = ps = p , regularization = 10 4.

Fig. 5. Experiment, spherical array, sine wave signal.

of validity is now improved to be the whole operating range of array
(in fact, error plots of K-method and M-method are identical up to
about 2.5 kHz). Also, the particular value of ranging from 10 7 to
1.0 only marginally in uences the results.

In summary, from all the simulations presented, it is apparent
that with proper choice of parameters and with regularization K-
method and M-method are behaving substantially equivalently over
the useful array frequency range and either method can successfully
extract directional information from the acoustic eld presented to
the array. Some differences do occur at the frequencies above the
spatial aliasing limit, where error exhibited by M-method appears to
be lower, and random noise does not seem to affect either algorithm.

6.2. Experimental results
The experiments with the real spherical and hemispherical arrays
were designed and carried out as described earlier in this document.
No substantial differences were observed in the results when the
signal windowing function (rectangular or Hann) was changed and
when was varied (within the same range as in simulations). There-
fore, in all the plots below ps = p , = 10 2, and rectangular
windowing is used. For the spherical (hemisphical) array, 60F and
49F (64H and 62H, respectively) S-grids were used.

Spherical array, sine wave signal: Figure 5 demonstrates the
localization performance obtained when the data frame is randomly
selected in the middle of the sine wave signal playback so that the
measurements are corrupted with reverberation. The operating fre-
quency of the array appears to be from about 1.5 to about 3.5 kHz.
The M-method exhibits earlier performance degradation similar to
that observed in simulations. The general trends observed when
varying ps and were consistent with those seen in simulations.

Spherical array, chirp signal: Figure 6 shows localization per-
formance for the chirp signal repeated 10 times with 1 s pauses and
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Fig. 6. Experiment, spherical array, chirp signal.

Fig. 7. Experiment, hemispherical array, sine wave signal.

time-averaged. In this plot, there no signi cant difference between
K- and M-methods. Note an increase in localization accuracy in the
low-frequency range due to absence of reverberation.

Hemispherical array, sine wave signal: Figure 7 illustrates the
localization error for the sine wave signal. The general structure of
the plot is similar to the one seen for the spherical array. The range
of good localization is extended up to about 4.5 kHz.

Hemispherical array, chirp signal: This plot is substantially
similar to Figure 7 and is not included for lack of space. Unlike the
spherical array case, the error is still high in the low frequency range
(i.e., absence of reverberation does not improve localization).

Summary: The experimental plots for the spherical array show
slightly narrower range of good localization performance (up to 3
3.5 kHz) compared to the simulation (up to 4 kHz), possibly due to
four bottom microphones missing in 60F grid compared to 64F grid
used for simulations. Also, it is seen that the reverberation harms the
localization signi cantly at low frequencies.

The experimental plots for the hemispherical array show higher
upper limit due to denser microphone spacing and to the sound-hard
array support. However, the localization performance at low fre-
quencies is always poor due to the array being mounted on a rela-
tively small table causing deviation from the acoustic image princi-
ple (remember that the theoretical foundation assumes that the ar-
ray is placed on an in nite, sound-hard plane). For reference, the
frequency of the sound for which the wavelength is equivalent to
the table radius is 750 Hz. It can be expected that if the array were
mounted directly on a oor or on a wall the localization performance
at lower frequencies would be signi cantly improved.

An important conclusion can be derived regarding the number of
microphones necessary for successful recovery of the scene spatial
structure up to order p. Earlier work [3] suggested that 2p2 is the
minimum number necessary; however, the experimental results pre-

sented here con rm that p2 microphones arranged over Fliege grid
provide adequate quadrature approximation. When less than p2 mi-
crophones are used, spatial aliasing occurs and the scene structure
can not be recovered correctly [7].

Also, in the present work auditory scene decomposition over
plane-wave basis (i.e., in terms of (s) coef cients) was considered.
However, once captured, it can be easily converted to the spherical
wavefunction basis (i.e., in terms of Cmn coef cients) using Gegen-
bauer expansion [7]. Thus, the developed algorithms are useful not
only for localization but also for capturing spatio-temporal acoustic
eld representation for headphone playback as in [10].

7. CONCLUSIONS AND FUTUREWORK
This experimental study has showed that with the Fliege grid based
microphone arrangement the spherical and hemispherical arrays op-
erate successfully up to the spatial aliasing frequency and that no sig-
ni cant performance differences are found between K-method and
M-method within the array effective frequency band, assuming that
regularization is applied for K-method and the truncation number
is adjusted appropriately for M-method. In fact, the effective fre-
quency band is even wider than can be expected from the theoretical
requirement of having 2p2 microphones for exact integration. Also,
somewhat surprisingly, it was observed in simulations that both al-
gorithms are very robust against random noise. Future work will use
the developed algorithms in virtual audio applications.
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