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ABSTRACT

Linear adaptive filters are often used for Acoustic Echo Cancella-
tion (AEC) but sometimes fail to perform well in notebook comput-
ers and inexpensive telephony devices. Low-quality speakers and
poorly-designed enclosures that produce vibrations often generate
harmonic distortion, and this nonlinear effect degrades the perfor-
mance of linear AEC algorithms considerably. In this work, we
present a new AEC architecture that consists of a linear, subband
adaptive AEC filter followed a nonlinear residual echo suppression
(RES) stage specifically designed to address harmonic distortion. In
addition to suppressing the residual echo in the primary subband,
the proposed model also suppresses the residual echo in a window
of bands surrounding the higher order harmonics. Results show con-
siderable improvement over other proposed algorithms, and the new
algorithm has much lower implementation costs compared to nonlin-
ear AEC models based on Volterra filters and a previously proposed,
nonlinear residual echo suppression algorithm.

Index Terms— acoustic echo cancellation, echo suppression,
nonlinear distortion, nonlinear filters, nonlinear acoustics

1. INTRODUCTION

An Acoustic Echo Cancellation (AEC) system is a critical compo-
nent in every full-duplex, speech communication system. Its pur-
pose is to remove the echo captured by the microphone when a sig-
nal is played through the speakers without degrading the near-end
speech. Although linear adaptive filters have often proved to be
adequate solutions to the AEC problem in high quality hardware,
they do not perform as well in common, inexpensive laptop comput-
ers or telephony devices which introduce nonlinear distortion in the
echo. Common sources of nonlinear distortion include low-quality
speakers, overpowered amplifiers and poorly-designed enclosures;
even modest nonlinear distortion can degrade the performance of
linear AEC models considerably. Applications such as hands-free
telephony and videoconferencing are particularly problematic due to
high loudspeaker volume levels. In laptop computers we have found
that high loudspeaker levels often lead to a nonlinear effect known
as Harmonic Distortion (HD). Under this effect, signals with high
power on particular frequencies produce an increase in the power of
frequencies that are exact multiples of the fundamental band. Some
laptop computers have lightweight, loose enclosures and high-power
speaker signals produce vibrations and reverberances of the entire
case generating harmonic distortion.

Several algorithms have been proposed for addressing these prob-
lems including nonlinear AEC models and linear Residual Echo Sup-
pression (RES) models. The first group include Volterra filters [1, 2],

power filters [3], saturation curve-based predistorters [4] and neural
networks [5]. Although these models have been successful in some
cases, the large amount of variables and the high order of the oper-
ations involved lead to long convergence times and are very expen-
sive in terms of computing requirements. In practical scenarios, RES
methods are often preferred. These RES algorithms take the output
of the AEC as input and try to predict and further suppress the resid-
ual echo. Some of these algorithms include center clipping [6] and
linear RES algorithms [7, 8, 9]. In general these methods are more
aggressive in the sense that they can reduce the echo further at the
expense of some near-end voice distortion in double-talk situations.

Recently, Kuech and Kellerman proposed [10] a nonlinear RES
algorithm using a frequency-domain power filter model of the acous-
tic echo path. Alternatively, in this work we propose another non-
linear, frequency-domain RES algorithm that specifically addresses
the problem of Harmonic Distortion in speech signals by modeling
inter-frequency dependencies of the speaker and residual echo sig-
nals. Compared to the power filter-based, nonlinear RES model, the
proposed Harmonic Distortion RES (HDRES) algorithm is very ef-
ficient in terms of computational costs since only a single transform
of the speaker signal is computed.

This paper is organized as follows. In section 2, the system ar-
chitecture is presented, and the proposed HDRES algorithm is de-
scribed in section 3. Numerical results comparing HDRES to several
other previously proposed architectures are provided in section 4,
and conclusions follow in section 5.

2. SYSTEM ARCHITECTURE

The proposed system architecture is shown in figure 1 and con-
sists of a linear, subband AEC algorithm followed by the nonlinear,
HDRES algorithm. The general idea behind this architecture is that
we should allow the AEC algorithm to cancel as much echo as possi-
ble with the magnitude and the phase of the reference signal before
disregarding the phase in the HDRES stage. In this paper, we use
the modulated complex lapped transform (MCLT) [11], a particular
form of a cosine modulated filter-bank that allows for perfect re-
construction, to transform the time domain signals to the frequency
domain but any frequency domain transform (e.g. STFT) can be
used. The MCLT also allows low-delay architectures when com-
bined with encoders based on the lapped orthogonal transform such
as G.722.1 [11]. The AEC is a frequency-domain linear adaptive
algorithm that performs per-band time prediction, and the estimated

echo D̂(κ, m) can be described as:

D̂(κ, m) =

T−1∑
t=0

WL(t, m)X(κ − t, m) (1)
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Fig. 1. Diagram of the proposed architecture.

where WL is a complex weight matrix for the linear AEC, X is the
complex transform of the speaker signal, κ is the frame index, m is
the frequency band, and T is the number of taps considered. The
HDRES filter is a magnitude-only predictor that addresses the HD
effect and will be described in the following section.

3. HARMONIC DISTORTION RESIDUAL ECHO
SUPPRESSION ALGORITHM

The HDRES problem can be modeled as a noise suppression prob-
lem: if we consider the residual echo as noise, an additive signal
plus noise model can be used, where the near-end speech plus back-
ground noise is the signal and the residual echo is the noise. The
input to the HDRES algorithm, E(κ, m), which is also the output of
the linear AEC, is

E(κ, m) = Dr(κ, m) + S(κ, m) + N(κ, m) (2)

where Dr(κ, m) is the true, residual echo signal, S(κ, m) the near-
end signal and N(κ, m) the background noise. Under this assump-
tion, we further suppress the residual echo per band using a magni-
tude regression model based on the residual fundamental band and
the harmonic frequencies as:

R(κ, m) = G(κ, m)E(κ, m). (3)

The real valued gain, G(κ, m), is given by:

G(κ, m) =
max{Ē(κ, m) − βD̄r(κ, m), N̄(κ, m)}

Ē(κ, m)
(4)

with smoothed magnitudes estimates of the AEC output, Ē(κ, m),
residual echo, D̄r(κ, m), and noise floor, N̄(κ, m), computed using
recursive averages as:

Ē(κ, m) = (1 − α)Ē(κ − 1, m) + α|E(κ, m)| (5)

D̄r(κ, m) = (1 − α)D̄r(κ − 1, m) + α|D̂r(κ, m)| (6)

N̄(κ, m) = (1 − α)N̄(κ − 1, m) + α|N̂(κ, m)|. (7)

In addition, |N̂(κ, m)| is the estimate of the magnitude of the noise
floor for frame κ and subband m computed by minimum statis-
tics [14], β can be used to tune the ”aggressiveness” of the algo-

rithm [10], α controls the amount of smoothing, D̂r(κ, m) is the
estimated, residual echo, and R(κ, m) is the complex output of the
HDRES. It should be noted that multiplying by the real valued gain
G(κ, m) affects only the magnitude of each subband, but not the

phase, and (3) can be viewed as a spectral subtraction [13] approach
similar to [8] when α = 1. The magnitude regression model can be
used since the residual phase information is difficult to predict and
is noncritical for speech intelligibility [12]. Given the microphone
signal contains background noise, spectral subtraction based on mi-
crophone signal estimation also suppresses the background noise in-
troducing unpleasant musical noise. To reduce the modulations of
the background noise, we apply a spectral flooring to the gain com-
putation in (4) [14]. Following the algorithm previously proposed
for linear RES [8], we compute G(κ, m) in the results in section 4

based on the instantaneous magnitudes of |E(κ, m)|, |D̂r(κ, m)|,
and |N̂(κ, m)| with α = 1 in (5), (6), and (7), respectively. Finally,
although we propose using the magnitude-based regression estimate
of the harmonic distortion, the HD problem can also be addressed
from a minimum mean square error perspective by replacing the

magnitudes in (5), (6), (7) (e.g. |E(κ, m)|, |D̂r(κ, m)|, |N̂(κ, m)|)
with the square of the corresponding magnitude values [10] and us-
ing power regression instead of magnitude regression below. In the

magnitude regression model, we need to compute |D̂r(κ, m)| which
is discussed next.

3.1. Residual Echo Estimation Model

Neglecting the delay effect of the acoustic echo and considering cor-
related speaker and residual echo signals under harmonic distortion,
the speaker signal at frequency f affects the residual echo signal at
frequencies f , 2f , 3f , etc. To describe this effect, we propose a
linear additive model:

|D̂r(κ, m)| =
M∑

i=1

H∑
j=1

K∑
k=−K

δ(i, j, k, m)WR(i, j, k)|X ′(κ, i)|

(8)
where

δ(i, j, k, m) =

{
1 if i × j + k = m
0 otherwise

(9)

and i is the fundamental frequency band, M is the number of sub-
bands, j is the harmonic, H is the number of harmonics consid-
ered, 2K + 1 is the length of the harmonic search window with
index k, WR(i, j, k) are the parameters of the HDRES model and
X ′(κ, i) is a transformed version of the speaker signal at frame in-
dex κ, frequency i. When dealing with a discretized version of the
signal, the frequency domain transform of each harmonic can span
several bands and can be displaced with respect to the integer divi-
sion/multiplication; typically we set K = 1 to handle echo leakage
from adjacent subbands. It should be noted that searching for the
potential bands for each harmonic (i.e. δ(i, j, k, m) = 1) can be im-
plemented very efficiently by considering a fundamental frequency
then calculating the window of bands surrounding each possible har-
monic. In other words, the actual implementation of (8) is sparse.

In the proposed algorithm, the regression is performed using the
frequency-domain transforms of a single frame of the speaker signal
and the microphone signal. Ideally, the magnitude regression in (8)
would be with respect to time (i.e. multiple speaker frames [8]) in
addition to the harmonics, but this is prohibitive in terms of CPU
consumption. Furthermore, the speaker and the residual echo signals
must be correlated, but the combination of the acoustic echo path
and the hardware produces a delay between both signals which may
be difficult to estimate in personal computers since operating sys-
tems are not hard real-time. An approximation which addresses both
problems is to compute the regression using a normalized transfor-
mation based on the delayed speaker signal, |X ′(κ, m)|, weighted
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by the linear AEC taps weights as:

|X ′(κ, m)| =

T−1∑
t=0

L(t, m)|X(κ − t, m)| (10)

where the corresponding, normalized weighting factor L(t, m) is:

L(t, m) =
|WL(t, m)|∑T−1

j=0 |WL(j, m)| , (11)

and WL is the weight matrix of the linear AEC algorithm. This trans-
formation leads to better results for the HDRES algorithm compared
with a fixed scalar delay (for example, taking the maximum over all
the weights of the AEC).

Vibration of the enclosure is usually only produced with high
powered signals; hence, harmonic distortion is only noticeable when
the magnitude of some frequencies is high. To avoid incorrect adap-
tation of the model when HD effect is not present, we introduce an
adaptive threshold for the speaker signal power in order to predict if
a given frequency would produce harmonics. This threshold is based
on the average power of the speaker signal. As the main goal of the
algorithm is to attenuate high-powered frequencies, we also apply a
threshold to the microphone and the residual signal: that is, we ap-
ply the filtering process when both the speaker and the microphone
signals for the particular band are above the given thresholds. Also,
we adapt the weights of the model only when the residual signal is
not negligible.

3.2. Model Adaptation

Since the HDRES algorithm uses a linear model with respect to har-
monics in the transformed speaker signal, we can use any linear
adaptive algorithm to update them; in this case we use the normal-
ized, least mean square (NLMS) algorithm [15] as:

ξ(κ, m) = |E(κ, m)| − |D̂r(κ, m)|
WR(i, j, k) ← WR(i, j, k) +

μ

P̄ (κ, m)
|X ′(κ, m)|ξ(κ, m)

where m = ij + k, μ is the step size, and the average power in the
transformed speaker signal is:

P̄ (κ + 1, m) = (1 − ρ)P̄ (κ, m) + ρ|X ′(κ, m)|2.

As with other RES methods, the algorithm is sensitive to double
talk detection: if adaptation occurs when near-end voice is present,
even for a short period of time, the near-end voice distortion in-
creases considerably. Since most double talk detectors are based
on averaged signal statistics (e.g. speaker, microphone, error), it
takes a few frames in order to detect a change. Besides, spurious
short single-talk segments can be incorrectly detected in the middle
of long double-talk segments. To cope with these effects, we pro-
pose two simple, yet effective mechanisms: adaptation rollback and
hysteresis control. Considering that the last adaptation steps before
a change from single-talk to double-talk were incorrect, adaptation
rollback consists of discarding the last T1 adaptation steps before the
double-talk detector transitions from single-talk to double-talk. This
mechanism is implemented by keeping a window of the last T1 in-
stances of the weight matrix. On the other hand, hysteresis control
is simply implemented by turning off the double-talk detector (i.e.,
going from double-talk to single talk and enabling adaptation) only
when T2 consecutive frames are classified as single-talk.

Denomination AEC RES ERLE (dB)

AECFreq Freq. Lin. 11.75
AECTime Time Lin. 13.94
AECPow Time Power 14.21
AECFreq+MRRES Freq. Lin. Time Reg. 14.98
AECFreq+HDRES Freq. Lin. Harm. Dist. 20.28
Max (SNR) 30.49

Table 1. ERLE comparison for different AEC/RES methods. Max
represents the Signal-to-Noise Ratio.
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Fig. 2. Evolution of ERLE over time.

4. EXPERIMENTAL RESULTS

To test our algorithm, we carried out several tests and we compare
the results with other known algorithms in terms of echo suppres-
sion and other performance measurements. Table 1 compares echo
attenuation in using ERLE (echo return loss enhancement) for sev-
eral AEC architectures. The 16 kHz sampled data was recorded
in a noisy environment, using a notebook with a high level of har-
monic distortion. Figure 2 shows the evolution of the ERLE over
time. AECFreq is the frequency-domain NLMS-based algorithm
described in [11]. MRRES is a frequency-domain, linear RES algo-
rithm based on magnitude regression and described in [8], AECTime

is a time domain AEC implementation where the taps are updated
using NLMS, and AECPow is an implementation of a time-domain
power filter with NLMS adaptation [3]. Finally, HDRES is the RES
algorithm presented in this paper. Max is the Signal-to-Noise Ra-
tio (SNR) of the microphone signal and provides an upper bound
for the ERLE. The AECFreq + HDRES combination outperforms
the other methods with an improvement of 8.53 dB over AECFreq

alone. Figure 3 shows the time-domain output signals obtained with
AECFreq and AECFreq+HDRES in subplots a) and b), respec-
tively.

The parameter H indicates the potential number of harmonic
frequencies that each frequency may affect. Figure 4 shows the
ERLE obtained for different values of H . Here, it is possible to
see that the ERLE values grow asymptotically, and a value of 10 is
adequate for most of the tests, with a maximum difference of more
than 2 dB compared to a value of 2. Figure 5 shows a spectrogram
representing a segment of conversation with single-talk and double-
talk intervals; bars indicate single-talk detection. We can see that
with the introduced enhancements, false positives (i.e. double-talk
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detected as single-talk) are reduced considerably at the expense of
more false negatives that do not affect the performance of the algo-
rithm.

a)

b)

Fig. 3. Time-domain residual echo plots for a) AECFreq and b)
AECFreq+HDRES.
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Fig. 4. ERLE as a function of the number of harmonics considered

Fig. 5. Spectrogram of the AEC+HDRES algorithm output. Seg-
ments between dashed lines represent near-end speech. The bars in-
dicate single-talk segments with (upper) and without (lower) double-
talk detector enhancements.

5. CONCLUSIONS

Residual acoustic echo suppression algorithms offer a good compro-
mise between linear AEC models and nonlinear AEC models. Due
to the significant number of parameters in nonlinear AEC models,
in particular those using Volterra filters, reduced convergence speed
and high computational complexity may prohibit these solutions for
many scenarios. RES algorithms do not suffer from convergence
problems since the linear AEC quickly converges to a first order so-
lution in a timely manner. Furthermore, previously proposed linear
RES algorithms have shown the ability to reduce the effects of sys-
tem nonlinearities due to the speakers and the enclosure. The non-
linear, harmonic distortion RES algorithm proposed in this paper as
well as the nonlinear RES algorithm based on power filters presented
in [10] can achieve better echo suppression with more sophisticated
models. The power filter RES algorithm [10] first computes L fre-
quency domain transforms of the speaker signal raised to the lth

power, (i.e. xl(k)) for l = 1 : L. Next, an orthogonal representation

of these L transforms is then computed. For the HDRES algorithm
we propose, a single transform of the speaker signal is computed
resulting in significant reduction of computational resources. Thus,
the HDRES algorithm falls in the middle of the complexity range
of echo cancellation/suppresion architectures spanning: linear AEC,
linear AEC plus linear RES, linear AEC plus HDRES, linear AEC
plus nonlinear power filter-based RES, and nonlinear AEC. As a re-
sult, it can be a realistic solution for many of today’s teleconferenc-
ing products. Preliminary experiments show an improvement of per-
ceptual quality without degrading the near-end speech, but additional
formal listening tests are needed to quantify such improvement.
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