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ABSTRACT

This paper examines the technique of using a noise suppressing
nonlinearity in the adaptive filter error feedback loop of the acoustic
echo canceler (AEC) based on the least mean square (LMS) algo-
rithm when there are both double-talk and white background noise
at the near-end. By combining the previously introduced noise sup-
pressing technique with a compressive nonlinearity derived from the
theory of robust statistics, consistently better results are obtained
during double-talk as well as during single-talk when compared to
the traditional approach of using only the compressive nonlinearity.
It is shown that a compressive form of noise reducing nonlinearity
can be derived also from the signal enhancement point of view when
the noise probability density (pdf) is tailed more heavily and has
a higher kurtosis than the Gaussian pdf. A combination of such a
noise compressing nonlinearity and a noise suppressing nonlinearity
is capable of producing results that are similar to that of the robust
statistics approach during double-talk along with an added benefit of
increased robustness during single-talk when there is only the back-
ground noise.

Index Terms—
acoustic echo cancellation, signal enhancement, robust statistics,

robust adaptive filtering, nonlinear processing

1. INTRODUCTION

It was shown in [1, 2] that both the misalignment and the echo re-
turn loss enhancement (ERLE) from using the time-domain or the
frequency-domain acoustic echo canceler (AEC) based on the least
mean square (LMS) adaptive algorithm can be improved through the
filter error enhancement procedure when there is either a linear dis-
tortion in the form of additive noise or a nonlinear distortion in the
form of speech coding at the near-end. The enhancement is per-
formed through the application of a noise suppressing nonlinearity to
the estimation error before the error is reused for weights adaptation,
as represented by the error suppression nonlinearity (ESN) in Figure
1. It was also shown in [1] that such a procedure is optimal in terms
of the steady-state mean-square error (MSE) [3] or the mean-square
deviation (MSD) [4] when right conditions are met. The results are
consistent with the notion that reducing the distortion that may be
present in the filter error enables an adaptive filter to better estimate
the linear part of the system response.

The additive near-end noise during the AEC can be grouped into
two major types. One is the background noise, such as air condi-
tioner or car engine noise, that can often be ubiquitous and con-
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Fig. 1. AEC scheme with error suppression nonlinearity (ESN) for
robustness against linear or nonlinear distortion to acoustic echo.

tinuously present. In such a case, an adaptive step-size procedure
can be used to scale down the step-size when the near-end signal-
to-noise ratio (SNR) is low in order to avoid the filter divergence.
The other type of noise that can be more troublesome than the back-
ground noise is the near-end speech, which is referred as the double-
talk when the far-end speaker is concurrently talking. The double-
talk can greatly disrupt the filter adaptation since it is usually larger
in volume than the acoustic echo and is highly colored and non-
stationary. The traditional approach is to stop the adaptation entirely
during double-talk by using a double-talk detector (DTD). A more
advanced approach is to use a compressive nonlinearity to limit the
sudden outliers in the filter error that may leak through when a DTD
fails to detect the event [5]. This technique is akin to removing an
impulsive noise from the corrupted signal to get back the signal of
interest and is very similar in goal to the ESN approach.

In this paper, the performances of the ESN in [1] and the com-
pressive nonlinearity in [5] are evaluated in a simulated acoustic en-
vironment with the double-talk and the near-end white background
present in the echo path. It is shown that a compressive form of
the ESN can be derived from the signal enhancement point of view
and that it is related in functionality to the compressive nonlinearity
in [5]. It is also shown that each type of nonlinearity has its own
merit and that the overall AEC performance can be improved by
combining a noise suppressing nonlinearity and a noise compressing
nonlinearity together to make the filter adaptation process less sus-
ceptible to additive distortions. The new results further support the
fact that the filter error enhancement strategy can make an adaptive
filter more robust to many types of disruption to the echo path.

The rest of the paper is organized as follows. First, noise re-
ducing nonlinearities are derived through the minimum mean-square
error (MMSE) approach. Second, a compressive nonlinearity de-
rived from the robust statistics theory is presented and related to the
MMSE noise compressing nonlinearity. Third, testing methods for
verifying the performance of the nonlinearities are described, fol-
lowed by simulation results. Finally, conclusion is given at the end.
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Fig. 2. Noise reducing nonlinearities: (a) for Gaussian ẽ and Lapla-
cian v, (b) for Gaussian ẽ and v, (c) for Laplacian ẽ and Gaussian v,
(d) for impulsive noise derived from the robust statistics theory.

2. NOISE REDUCING NONLINEARITIES

Let the noisy filter error e be modeled additively as e = ẽ+v, where
ẽ is the original filter error and v is the noise. Then there are three
distinctive cases obtained from the MMSE estimation of ẽ by taking
the conditional expectation E[ẽ|e] as follows.

2.1. Gaussian filter error and any noise distributions

If ẽ is zero-mean Gaussian distributed with the variance σ2
ẽ , then the

MMSE estimate of e for any noise v is given by [1]

fGAMMSE(e) =

∫ ∞

−∞
ẽ pẽ|e(ẽ|e)dẽ =

∫∞
−∞ ẽ pe|ẽ(e|ẽ)pẽ(ẽ)dẽ∫∞
−∞ pe|ẽ(e|ẽ)pẽ(ẽ)dẽ

=

∫∞
−∞ ẽ pv(e− ẽ)pẽ(ẽ)dẽ∫∞
−∞ pv(e− ẽ)pẽ(ẽ)dẽ

= −σ2
ẽ

p ′e (e)
pe(e)

. (1)

Specifically, if v is zero-mean Laplacian distributed with the scaling
parameter αv , then (1) gives

fGLMMSE(e) =
σ2
ẽ

αv

⎡
⎣ e

−ξerfc
(
ψ−ξ√

2ψ

)
− eξerfc

(
ψ+ξ√

2ψ

)

e−ξerfc
(
ψ−ξ√

2ψ

)
+ eξerfc

(
ψ+ξ√

2ψ

)
⎤
⎦ , (2)

where ξ = e/αv , ψ = σ2
ẽ/α

2
v , and erfc(x) = 2√

π

∫∞
x
e−r

2

dr is
the complimentary error function. (2) is plotted for σ2

ẽ = αv = 1 in
Figure 2(a).

2.2. Any filter error and Gaussian noise distributions

If v is zero-mean Gaussian distributed with the variance σ2
v , then the

MMSE estimate of e for any filter error ẽ is given by

fAGMMSE(e) =
σ2
vp
′
e (e) + epe(e)

pe(e)
= e+ σ2

v

p ′e (e)
pe(e)

. (3)

Specifically, if ẽ is zero-mean Laplacian distributed with the scaling
parameter αẽ, then (3) gives [1]

fLGMMSE(e) =

αẽ

⎡
⎣(ψ + ξ)eξerfc

(
ψ+ξ√

2ψ

)
− (ψ − ξ)e−ξerfc

(
ψ−ξ√

2ψ

)

eξerfc
(
ψ+ξ√

2ψ

)
+ e−ξerfc

(
ψ−ξ√

2ψ

)
⎤
⎦, (4)

where ξ = e/αẽ and ψ = σ2
v/α

2
ẽ . (4) is plotted for αẽ = σ2

v = 1 in
Figure 2(c).

2.3. Gaussian filter error and Gaussian noise distributions

If ẽ and v are zero-mean Gaussian distributed with the variances σ2
ẽ

and σ2
v , respectively, then either (1) or (3) can be used to obtain

fGGMMSE(e) =
σ2
ẽ

σ2
ẽ + σ2

v

e, (5)

which is the well-known Wiener filter used in the frequency-domain
signal enhancement techniques. (5) is plotted for σ2

ẽ = σ2
v = 1 in

Figure 2(b).

2.4. Comparison of noise reducing nonlinearities

(5) can be thought of as the mid-point of the three cases, where (5)
transforms into (2) or (4) when the noise probability density function
(pdf) or the filter error pdf in the respective cases are tailed more
heavily and is more peaky, i.e. has higher kurtosis, than the Gaussian
pdf. That is, (2) compresses the signal amplitude at the high end
while (4) suppresses it at the low end, each targeting the observed
signal magnitude at which the noise probability is higher compared
to the target signal. It can be shown that as |e| → ∞, (2) levels off
to plateaus at ±σ2

ẽ/αv and that (4) asymptotically reaches linearly
sloped boundaries with the offset amount of ±σ2

v/αẽ. It can also
be shown numerically (since closed-form solutions are not always
attainable) by using the Gauss-Hermite quadrature to estimate the
integrals that using the Laplacian pdf instead of the Gaussian pdf for
ẽ in (2) gives the same compressive form of nonlinearity but with
more suppression near the origin, whereas using a pdf with higher
kurtosis than the Laplacian pdf (e.g. double-sided Gamma) for ẽ
in (4) gives a “coring” form of nonlinearity that suppresses small
amplitudes while preserving larger ones. Hereafter, (2) and (4) are
referred as fcomp and fsupp, respectively.

3. COMPRESSIVE NONLINEARITY FOR DOUBLE-TALK

It was shown in [5] and by several others that a compressive form of
nonlinearity can be derived for an impulsive noise through the robust
statistics theory [6]. According to [5], the nonlinearity is defined as

frobust(e) = ψ

[
|e|

s

]
sign [e] s, (6)

ψ

[
|e|

s

]
= min

[
|e|

s
, k0

]
, (7)

s(n+ 1) = λss(n) +
1 − λs
β

ψ

[
|e(n)|

s(n)

]
s(n), (8)

where (7) is the compressive function and (8) is the scaling function
for some control parameters k0, λs, and β. (6) is plotted in Figure
2(d) for k0 = s = 1.

One can immediately see a similarity in the compressive form
between (2) and (6), as (2) also limits large values in observed signal
caused by the addition of noise with heavy-tailed distribution. The
main difference is that (2) holds the output to within the ±σ2

ẽ/αv
range, which allows for adaptive adjustment of the threshold as long
as the statistics from both the signal of interest and the noise can be
well estimated, while (6) limits the output range to ±s, where it can
be seen from (8) that the scaling factor is a smoothed estimate of the
average magnitude of the observed filter error, i.e. E[|e|]. Therefore,
(2) should be able to track the changes in the environment better than
(6), while (6) is more effective than (2) in the ability to limit large
fluctuations in signal value but may be too restrictive if it is used
for scaling down the adaptive filter error, which ultimately leads to
slower convergence.
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4. TESTINGMETHODS

4.1. Double-talk detector

The Geigel DTD [7] is used here, whose decision rule is defined by

max{|x(n)| . . . |x− L+ 1|} < T |y(n)| → DT,

max{|x(n)| . . . |x− L+ 1|} ≥ T |y(n)| → no DT, (9)

where x is the far-end signal, L is the tap length, y is the near-end
signal, and T is the threshold value. Setting T too high increases
the false detection rate, which is undesirable if further deceleration
in the convergence speed from the freezing of adaptation is to be
avoided. There are other more reliable DTD’s based on the general-
ized cross-correlation (GCC) method, but (9) is used in this case for
its simplicity and also to place more responsibility on a filter error
nonlinearity to limit the effect of double-talk leakage.

4.2. Regularization procedure

Besides the normalized LMS (NLMS) algorithm, the affine projec-
tion algorithm (APA) [8] is used here to obtain a faster convergence
for the case of a long impulse response. Just as with NLMS, APA is
highly sensitive to the near-end noise that causes adaptation instabil-
ity when the far-end signal is weakly excited. A simple yet effective
solution for NLMS is using

||x||2

||x||4 + γσ4
v

(10)

to scale the step-size rather than with 1/||x||2 for some constant γ
[9]. (10) is nearly zero for very small far-end signal power, whereas
it becomes the usual normalization factor when the far-end power is
large than the near-end noise power. The same idea can be extended
to APA by replacing the normalization matrix [ XTX + δI ]−1 by

[ XTX + γσ2
vI ]−1XTX [ XTX + γσ2

vI ]−1. (11)

The application of (11) to APA can decrease the misalignment drasti-
cally when there is the near-end noise. However, there are still some
instances of divergence even after the regularization procedure when
the SNR is extremely low. Thus to reduce the chance of such an oc-
currence, the filter adaptation is allowed only during voice activity
by using a voice activity detector (VAD). Hereafter, NLMS and APA
combined with the regularization procedure are referred respectively
as RNLMS and RAPA.

4.3. Simulation and system parameter estimation procedures

16-bit female and male speeches sampled at 8 kHz are used for the
far-end and the near-end signals, respectively. The echo return loss
(ERL) is set at 20 dB, the average far-end to double-talk ratio is set at
6 dB, and 10 dB SNR white Gaussian noise is added to the acoustic
echo. The Geigel detector threshold T is set at 2 or 4, and the DTD
hold time is set at 30 ms.

The step-size μ is set at 0.5 or 1 for RNLMS and RAPA, for last
of which the fourth-order APA is used. The regularization parame-
ter γ is set at 106 for RNLMS and 1 for RAPA. The misalignment,
which measures the MSD performance of the AEC, is defined as

Misalignment ≡ 10 log10

‖h(n) − w(n)‖2

‖h(n)‖2
(dB), (12)

where h and w are the true and the estimated impulse responses,
respectively.

The parameters for frobust are set at λs = 0.9969, k0 = 1.1,
and β = 0.6067, where the forgetting factor λs is chosen according
to the formula τsamples ≈ 1/(1 − λs), which gives 40 ms as the
exponential decay time. The noise and the filter error statistics are
estimated by

σ̂2
v(n) = λvσ̂

2
v(n− 1) + (1 − λv)e

2(n), (13)
σ̂2
ẽ(n) = λẽσ̂

2
ẽ(n− 1) + (1 − λẽ)max{e2(n) − σ̂2

v(n), 0}, (14)

where σ̂2
v is calculated during silence and held constant otherwise,

whereas σ̂2
ẽ is set equal to σ̂2

v during silence and updated only during
voice activity. λv and λẽ are chosen with respective decay times of
100 ms and 40 ms. σ̂ẽ and s are forced to decay down to σ̂v during
double-talk. Using (13) and (14) to estimate the scaling parameter
α for the Laplacian pdf will overestimate it by roughly a factor of
1.25, which translates into more restrictive thresholding for (2) but
less for (4).

There are two nonlinearity combinations of interest: fsupp +
fcomp and fsupp + frobust. When two nonlinearities are used to-
gether, each nonlinearity is applied separately to e, and the output
with smaller magnitude is taken as the effective output of the ESN.

5. SIMULATION RESULTS

Figure 3 shows the misalignment plots from using RNLMS with dif-
ferent combinations of the parameters μ and T and the nonlinearities
fsupp, fcomp, and frobust. A short impulse response with 100 coef-
ficients (12.5 ms) is used. The double-talk occurs during some time
between 2 and 4 seconds. It can be observed from all of the cases that
in general fsupp + fcomp performs best during single-talk, i.e. when
there is only the background noise, whereas fsupp + frobust per-
forms best during double-talk. As discussed in [1], the effectiveness
of the ESN disappears when μ is decreased beyond a certain point
due to excessive slowing of the convergence speed by the ESN.

Adding fcomp to fsupp further improves the misalignment dur-
ing both single-talk and double-talk, and the combination does better
than others especially when μ is large. This means that the compres-
sive nature of fcomp has an additional stabilizing effect, as one form
of disruptions to the echo path is the occurrence of sudden changes
between the voiced speech, i.e. high SNR, and the unvoiced speech
or the silence, i.e. low SNR. fsupp + fcomp also enables the ESN
performance to reach close to that of frobust during double-talk,
where it was observed in other cases with different set of system
parameters that almost the same performance can be obtained.

frobust also benefits from the addition of fsupp during both
single-talk and double-talk, most likely since frobust by itself fails to
suppress the lower magnitude noise that fsupp is better able to adap-
tively suppress. As expected, fsupp + fcomp does not do as well as
fsupp + frobust during double-talk since fcomp has a wider output
range than frobust and thus is unable to limit many large deviations
as well as frobust can. At this time, there is no practical way to en-
force fcomp by considering the near-end speech as the noise since
the near-end speech energy during double-talk cannot be reliably es-
timated, the problem of which is compounded by the fact that a DTD
can sporadically give false decisions.

Finally, Figure 4 shows the misalignment plots from using
RAPA with μ = 0.5, T = 4, and a longer impulse response of 800
coefficients (100 ms). fsupp + fcomp performs best for most of the
time with this particular example. Although the misalignment for
RAPA by itself is not shown in Figure 4, it was observed that the
misalignment is decreased by over 20 dB after the inclusion of the
nonlinearities, which further signifies the effectiveness of the ESN.
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Fig. 3. Misalignment from using RNLMS and a short impulse re-
sponse (12.5 ms) with different combinations of μ, T , fsupp, fcomp,
and frobust.
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6. CONCLUSION

The technique of using a noise suppressing nonlinearity in the adap-
tive filter error feedback loop of the acoustic echo canceler (AEC)
based on the least mean square (LMS) algorithm is extended to in-
clude a noise compressing nonlinearity to limit large deviations in
the observed filter error due to the double-talk. By combining the
previously developed noise suppressing nonlinearity with a com-
pressive nonlinearity derived from the theory of robust statistics,
consistently better results are obtained during both single-talk and
double-talk when compared to using only the compressive nonlin-
earity. A compressive form of noise reducing nonlinearity can also
be derived from the signal enhancement point of view, and a com-
bination of noise suppressing and compressing nonlinearities is ca-
pable of providing performance similar to that of the compressive
nonlinearity of the robust statistics approach during double-talk but
also with an added benefit of increased robustness during single-talk
when there is only the background noise. The new results further
support the fact that the filter error enhancement strategy can make
an adaptive filter more robust to many types of disruption to the echo
path.
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[5] T. Gänsler, S.L. Gay, M.M. Sondhi, and J. Benesty, “Double-talk robust
fact converging algorithms for network echo cancellation,” IEEE Trans.
Speech Audio Process., vol. 8, no. 6, pp. 656–663, Nov. 2000.

[6] P.J. Huber, Robust Statistics, Wiley, 1981.
[7] D.L. Duttweiler, “A twelve-channel digital echo canceler,” IEEE Trans.

Commun., vol. 8, no. 5, pp. 508–518, Sep. 2000.
[8] S. Haykin, Adaptive Filter Theory, Prentice Hall, 2002.
[9] A. Hirano and A. Sugiyama, “A noise-robust stochastic gradient algo-

rithm with an adaptive step-size for mobile hands-free telephones,” in
Proc. ICASSP, May 1995, vol. 2, pp. 1392–1395.

256


