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ABSTRACT 

 
Most of the adaptive algorithms used for acoustic echo 
cancellation (AEC) are designed assuming an exact modeling 
scenario (i.e., the acoustic echo path and the adaptive filter have 
the same length) and a single-talk context (i.e., the near-end 
speech is absent). In real-world AEC applications, the adaptive 
filter works most likely in an under-modeling situation, i.e., its 
length is smaller than the length of the acoustic impulse response, 
so that the under-modeling noise is present. Also, the double-talk 
case is almost inherent, so that a double-talk detector (DTD) is 
usually involved. Both aspects influence and limit the algorithm’s 
performance. Taking into account these two practical issues, a 
double-talk robust variable step size normalized least-mean-
square (VSS-NLMS) algorithm is proposed in this paper. This 
algorithm is nonparametric in the sense that it does not require 
any information about the acoustic environment, so that it is 
robust and easy to control in practice.  
 

Index Terms— Acoustic echo cancellation, adaptive filters, 
variable step size normalized least-mean-square (VSS-NLMS) 
algorithm, double-talk robustness, under-modeling system 
identification.
 

1. INTRODUCTION 
 
Adaptive algorithms designed for acoustic echo cancellation 
(AEC) have to consider several practical aspects such as the large 
length and time-varying nature of the echo path, and the presence 
of the near-end signal [1]. Mainly due to complexity reasons, the 
normalized least-mean-square (NLMS) algorithm and different 
versions of it [2] are frequently involved in AEC. 

The performance of the NLMS based algorithms is governed 
by the step size parameter. Its value has to be large in order to 
achieve a high convergence rate or tracking (e.g., as in the case of 
an abrupt change of the echo path); on the other hand, low 
misadjustment (desired in the steady-state) is obtained using a 
small step-size. Consequently, a compromise choice should be 
made. This is the main motivation behind the development of the 
variable step size NLMS (VSS-NLMS) algorithms [3], [4] (and 
references therein), which control the value of the step size 
parameter according to these requirements. Nevertheless, most of 

these algorithms were derived assuming an exact modeling 
scenario, i.e., the length of the adaptive filter is equal to the 
length of the system that has to be modeled. In the context of 
AEC, due to the large length of the acoustic impulse response, the 
under-modeling situation (i.e., the length of the adaptive filter is 
smaller than the length of the echo path) is the rule. Hence, a 
residual echo, also known as the under-modeling noise, disturbs 
the algorithm performance. 

A critical factor in echo cancellation is the presence of the 
near-end signal. It contains both the ambient noise and the near-
end speech. When only the ambient noise is present, the adaptive 
algorithm can act on its own. The presence of the near-end speech 
is considered as a different case, also known as double-talk; it 
seriously affects the algorithm behaviour. Consequently, a double-
talk detector (DTD) is usually involved, in order to slow down or 
completely halt the algorithm [1]. Since there is an inherent 
latency in the DTD decision, the adaptive algorithm should handle 
a small amount of double-talk without diverging. Nevertheless, 
most of the NLMS based algorithms face real difficulties in this 
context. As a consequence, several solutions for enhancing the 
double-talk robustness of these algorithms were developed [5], [6] 
(and references therein). 

In this paper we propose a VSS-NLMS algorithm derived in 
a general framework that considers these two important aspects, 
i.e., the under-modeling case and the double-talk scenario. Due to 
its nature, this algorithm takes into account the under-modeling 
noise and it is also robust to double-talk. The proposed algorithm 
does not require any a priori information about the acoustic 
environment, so that it is easy to control in real-world AEC 
applications. 

   
2. VSS-NLMS ALGORITHM FOR DOUBLE-TALK 

AND UNDER-MODELING SCENARIO 
 
Let us consider the AEC configuration depicted in Fig. 1. The 
goal of this classical scheme is to identify an unknown system 
(i.e., acoustic echo path) using an adaptive filter. Both systems 
have finite impulse responses, defined by the real-valued vectors 
h = [h0 h1 … hN – 1]T and (n) = [ 0(n) 1(n) … L – 1(n)]T, where 
superscript T denotes transposition and n is the time index. Since 
the under-modeling scenario is more realistic in AEC, we impose 
that L < N. 
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The signal x(n) is the far-end speech which goes through the 
acoustic impulse response h, resulting the echo signal y(n). This 
signal is picked up by the microphone together with the near-end 
speech u(n) and the ambient noise w(n), resulting the microphone 
signal d(n). The output of the adaptive filter, (n), provides a 
replica of the echo, which will be subtracted from the microphone 
signal. The DTD block controls the algorithm behaviour during 
double-talk; nevertheless, the proposed algorithm will be derived 
without involving the DTD decision. 

In the most general situation, the desired signal can be 
written as 

  

d(n) = y(n) + u(n) + w(n) = [xT
L(n) xT

N–L(n)][hT
L hT

N–L]T + u(n) + w(n), 

where the following notation has been introduced: 
 

xL(n) = [x(n) x(n – 1) … x(n – L + 1)]T, 

xN–L(n) = [x(n – L) x(n – L – 1) … x(n – N + 1)]T, 

hL = [h0 h1 … hL – 1]T, hN–L = [hL h L + 1 … hN – 1]T. 

Consequently, the echo signal is y(n) = yL(n) + yN–L(n), where 
yL(n) = xT

L(n)hL and yN–L(n) = xT
N–L(n)hN–L. The a priori error is 

defined using the adaptive filter coefficients at time n – 1, as 
 
          e(n) = d(n) – (n) = d(n) – xT

L(n) (n – 1) = 

                 = xT
L(n)[hL – (n – 1)] + yN–L(n) + u(n) + w(n) .       (1) 

 
In a similar manner, the a posteriori error can be written based on 
the adaptive filter coefficients at time n, as 
 
              (n) = xT

L(n)[hL – (n)] + yN–L(n) + u(n) + w(n) .         (2) 
 
The update equation of the gradient based adaptive algorithm is 
 
                          (n) = (n – 1) + (n)xL(n)e(n) ,                      (3) 
 
where (n) is the step-size parameter (positive scalar). Thus, 
taking (1)–(3) into account, the a posteriori and a priori error 
signals are related by the following formula: 
 
                         (n) = e(n)[1 – (n)xT

L(n)xL(n)] .                      (4) 
 
At a first glance, the contributions of the under-modeling noise 
and the near-end signal do not appear explicitly in the above 
relation. So that, in order to derive an expression for the step size 
parameter, we may impose to cancel the a posteriori error signal, 
i.e., (n) = 0, assuming that e(n)  0 [7]. As a result, NLMS(n) = 
[xT

L(n)xL(n)]–1, which is the step size of the classical NLMS 
algorithm. In practice, a positive constant (usually smaller than 1) 

multiplies this step size to achieve a proper compromise between 
the convergence rate and the misadjustment [2]. We should note 
that this straightforward approach holds in the noise-free sigle-
talk scenario (i.e., w(n) = 0, u(n) = 0) and in the exact modeling 
situation (i.e., N = L). The differences from the ideal conditions 
can be explained as follows. If we impose to cancel the a 
posteriori error in the presence of the near-end signal and in the 
under-modeling case, it results from (2) that 
 
             xT

L(n)[hL – (n)] = – yN–L(n) – u(n) – w(n)  0 .            (5) 
 
Hence, the adaptive filter estimate is biased. On the other hand, 
the proper condition xT

L(n)[hL – (n)] = 0, leads to 
 
       (n) = e(n)[1 – (n)xT

L(n)xL(n)] = yN–L(n) + u(n) + w(n) .    (6) 
 
Consequently, in consistence with the approach proposed in [4] 
and [8], and assuming that the sequences yN–L(n), u(n), and w(n) 
are uncorrelated with each others, we can impose that E{ 2(n)} = 
E{y2

N–L(n)} + E{u2(n)} + E{w2(n)}, where E{•} denotes the 
mathematical expectation. Squaring (6), then taking the 
expectations, and assuming that xT

L(n)xL(n) = LE{x2(n)} for L>>1 
(which is valid in AEC where the length of the adaptive filter is of 
the order of hundreds), it results that 
 
               E{e2(n)}[1 – (n)LE{x2(n)}]2 = 
 

                         = E{y2
N–L(n)} + E{u2(n)} + E{w2(n)} .             (7) 

 
Regarding (7) as a quadratic equation, the solution for the step 
size parameter is 
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Expression (8) is useless in a real-world AEC application since it 
depends on some parameters that are unavailable, i.e., yN–L(n), 
u(n), and w(n). In order to solve this issue, first we assume that 
yL(n) and yN–L(n) are uncorrelated. This holds especially when the 
correlation function of the input signal is a particular one, as in 
the case of white noise (frequently used in adaptive filters’ 
analysis in the context of the independence assumptions). When 
the input signal is speech it is difficult to analytically state this 
assumption. Nevertheless, we can extend it based on the fact that 
L >> 1 in AEC scenario, and that for usual cases the correlation 
function has a decreasing trend with the time lag. Moreover, in 
general the first part of the acoustic impulse response hL is more 
significant as compared to the tail hN–L. Thus, E{y2

N–L(n)}  
E{y2(n)} – E{y2

L(n)}. Secondly, we assume that the adaptive filter 
coefficients have converged to a certain degree, so that E{y2

L(n)} 
 E{ 2(n)}. We know that d(n) = yL(n) + yN–L(n) + u(n) + w(n). 

Since all the sequences from the right term are uncorrelated with 
each others, it results that 
 

E{d2(n)} = E{y2
L(n)} + E{y2

N–L(n)} + E{u2(n)} + E{w2(n)}. 
 

Hence, taking into account the previous assumptions, the most 
problematic term from (8) becomes 
 

E{y2
N–L(n)} + E{u2(n)} + E{w2(n)} = E{d2(n)} – E{ 2(n)}, 

 

and the expression of the step size parameter is 

(n) h 

x(n) 

u(n)

d(n) e(n) 
+

+ – + 
(n) y(n) 

Fig. 1.  AEC configuration. 
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In practice, (9) has to be evaluated in terms of power estimates, as 
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The notation )(ˆ 2 np  represents the power estimate of the 
sequence p(n). These parameters can be computed recursively as 

)()1()1(ˆ)(ˆ 222 npnn pp , where  = 1 – 1/(KL) is a 

weighting factor, with K  > 1; the initial value is 0)0(ˆ 2
p . 

Next, a few practical issues have to be considered. First, in 
order to avoid divisions by small numbers, a positive constant , 
known as the regularization factor, needs to be added to the first 
denominator in (10). Also, a small positive number  should be 
added to the second denominator of (10) to avoid division by zero. 
Secondly, under our assumptions, we have E{d2(n)}  E{ 2(n)} 
and E{d2(n)} – E{ 2(n)}  E{e2(n)}. Nevertheless, the estimates 
of these parameters could lead to some deviations from the 
previous theoretical conditions, so that we will take the absolute 
value of the step size parameter from (10). Consequently, the 
proposed algorithm uses the step size 
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In order to satisfy the assumption that the adaptive filter 
coefficients have converged to a certain degree, we could start the 
proposed algorithm using (n) = [  + xT

L(n)xL(n)]–1 in the first M 

iterations, with M  L. This option influences only the initial 
convergence rate. 

It is interesting to notice that the step size of the proposed 
algorithm does not depend explicitly on the near-end signal or the 
under-modeling noise, even if it was developed under these 
conditions; consequently, a robust behaviour is expected. 
Moreover, since only the parameters available from the adaptive 
filter are required and there is no need for a priori information 
about the acoustic environment, it is easy to control in practice. 

 
3. SIMULATION RESULTS 

 
The simulations were performed in an AEC context, as 

shown in Fig. 1. The acoustic echo path is plotted in Fig. 2 (the 
sampling rate is 8 kHz). Its impulse response h has N = 1000 
coefficients, while the adaptive filter length is L = 500. The input 
signal x(n) is either a white Gaussian noise or a speech signal. An 
independent white Gaussian noise signal w(n) is added to the 
echo signal y(n), with 20 dB signal-to-noise ratio (SNR). 

We compare the proposed algorithm with the NLMS 
algorithm with two different step sizes, (a) 0.5[  + xT

L(n)xL(n)]–1 
and (b) 0.05[  + xT

L(n)xL(n)]–1, and with the nonparametric VSS-
NLMS (NPVSS-NLMS) algorithm developed in [4]. This last 
algorithm was derived in a similar manner with the proposed one, 
but assuming an exact modeling (N = L) and a single-talk context. 
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Fig. 2.  (a) Acoustic impulse response; (b) Frequency response. 

 
Its step size is ))](/(1[)]()([)( 1 nnnn ewL

T
L xx , 

where w
2 is the noise power (it has to be estimated during 

silences). A regularization factor  = 30 x
2 is used for all the 

algorithms, where x
2 is the power of the input signal. The 

weighting factor  (needed for power estimates) uses K = 2 for the 
white Gaussian input signal and K = 6 for the speech input signal. 
As it was specified before, the proposed algorithm uses a regular 
NLMS step size in the first M = L iterations. This is a small value 
of M (in order to show one of the worst cases), so that a slower 
initial convergence rate is expected. In practice, according to the 
specific of application, a larger value could be used. The measure 
of performance is the normalized misalignment (in dB), defined 
as 20log10(||h–[ T(n) 0T

N–L]T||2/||h||2), where ||•||2 is the l2 norm. 
In the experiment presented in Fig. 3, using the white 

Gaussian input signal, the algorithms were stressed as follows. 
First, an abrupt change in the acoustic environment is introduced 
by shifting the acoustic impulse response to the right by 12 
samples, after 5 seconds from the debut of the adaptive process. 
Secondly, a near-end sinusoidal burst, u(n) = 0.5sin(0.5 n) is 
introduced after 10 seconds, for a period of 2 seconds; the DTD is 
not involved. Finally, the SNR is changed from 20dB to 10dB 
after 15 seconds from the debut (assuming that the new value of 

w
2 is not available yet for the NPVSS-NLMS algorithm). For 

comparison, the theoretical misalignment was measured as 
20log10(||h – [0T

L hT
N–L (n)]T||2/||h||2). In terms of convergence rate 

and tracking capabilities, the behaviour is almost the same for all 
the algorithms, except for the NLMS algorithm with the smaller 
step size, which is slower as expected. The proposed algorithm 
has a slightly lower final misalignment; its value is very close to 
the theoretical one and to the one achieved by the NLMS 
algorithm with the smaller step size. Most importantly, the 
proposed algorithm rules in the presence of the near-end signal 
variations. 

In the second set of experiments we used speech as input, 
and also for the near-end component u(n) (Fig. 4). Referring to 
(11), the quantity under the square-root provides an estimate of 
the near-end signal power plus the under-modeling noise power. 
Nevertheless, due to the specific nature of the speech signal (e.g., 
nonstationary character) the accuracy of the near-end speech 
power estimate is problematic, especially for long double-talk 
periods. Consequently, a DTD has to be involved in practice.  
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Fig. 3.  Misalignment of the NLMS algorithm with two different 
step sizes (a) 0.5[  + xT

L(n)xL(n)]–1 and (b) 0.05[  + xT
L(n)xL(n)]–1, 

misalignment of the NPVSS-NLMS and proposed VSS-NLMS 
algorithms, and theoretical misalignment. The input signal is a 
white Gaussian noise, N = 1000, L = 500,  = 1 – 1/(2L), and 
SNR = 20dB. The impulse response changes after 5 seconds. A 
sinusoidal near-end burst (2 seconds) appears after 10 seconds. 
The SNR is decreasing from 20 dB to 10 dB after 15 seconds. 
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Fig. 4.  (a) Far-end speech; (b) Near-end speech for simulation for 
Fig. 5a (without DTD); (c) Near-end speech for simulation for 
Fig. 5b (with Geigel DTD). 
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Fig. 5.  Performance during double-talk: (Upper) without DTD 
(near-end speech from Fig. 4b); (Lower) with Geigel DTD (near-
end speech from Fig. 4c). Misalignment of the NLMS algorithm 
with two different step sizes (a) 0.5[  + xT

L(n)xL(n)]–1 and          
(b) 0.05[  + xT

L(n)xL(n)]–1, misalignment of the NPVSS-NLMS 
and proposed VSS-NLMS algorithms. The input signal is speech, 
N = 1000, L = 500,  = 1 – 1/(6L), and SNR = 20dB. 

Two scenarios were considered. In the first one, the near-end 
speech is present for a short period of 2 seconds (Fig. 4b). The 
results of this simulation, performed without DTD, are presented 
in Fig. 5a. It can be noticed that the proposed algorithm is very 
robust in this case and outperforms by far the other algorithms. In 
the second scenario, the double-talk situation is stronger (Fig. 4c), 
so that a simple Geigel DTD [9] is involved (its settings are 
chosen assuming a 6dB attenuation, i.e., the threshold is equal to 
0.5 and the hangover time is set to 240 samples). The results are 
shown in Fig. 5b. Also, it is clear that the proposed algorithm is 
very stable as compared to the others.  
 

4. CONCLUSIONS AND PERSPECTIVES 
 
The presence of the near-end signal and the under-modeling 
situation are two factors with a great impact on the performances 
of AEC applications. In this paper we have considered these 
aspects in the context of VSS-NLMS algorithms. The proposed 
algorithm is very simple and easy to control in practice, because it 
does not require any parameters from the acoustic environment. 
The simulation results indicate a good behaviour during double-
talk situations. A comparison with other double-talk robust 
algorithms will be done in the near future.   
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