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ABSTRACT
In this paper we present two new variable step size (VSS) meth-
ods for adaptive filters. These VSS methods are so effective, they
eliminate the need for a separate double-talk detection algorithm in
echo cancellation applications. The key feature of both approaches
is the introduction of a new near-end signal energy estimator (NE-
SEE) that provides accurate and computationally efficient estimates
even during double-talk and echo path change events. The first VSS
algorithm applies the NESEE to the recently proposed Nonparamet-
ric VSS NLMS (NPVSS-NLMS) algorithm. The resulting algorithm
has excellent convergence characteristics with an intrinsic immunity
to double-talk. The second approach is somewhat more ad hoc. It
is composed of a combination of an efficient echo path change de-
tector and the NESEE. This VSS method also has excellent conver-
gence, double talk immunity, and computational efficiency. Simula-
tions demonstrate the efficacy of both proposed algorithms.

Index Terms— Double-talk detection, acoustic echo canceller,
echo path change detection, and AEC.

1. INTRODUCTION

Adaptive algorithms are extensively used in signal processing ap-
plications [1]. The normalized least mean square (NLMS) algo-
rithm is highly popular because of it robustness and simplicity. The
stability and adaptation speed of this algorithm is governed by a
step size parameter. The choice of this parameter reflects the trade-
off between fast convergence on one hand and poor steady state
misalignment on the other. To address these conflicting require-
ments, numerous variable step size (VSS) algorithms have been pro-
posed [2] [3] [4] [5] [6]. A key parameter in most VSS algorithms
is the estimate of the energy of the near-end signal. Often, minimum
statistics methods [7] are used, but these only estimate the energy
of the background noise of the near-end signal, not the energy of the
total signal – the background and the near-end talker. Other attempts
have been made to estimate the near-end talker’s energy, often based
on deviations of a subset of the adaptive filter coefficients, but these
methods are usually not robust.

Figure 1 shows the basic block diagram of an AEC. The far-end
signal x(n) is filtered through the echo-path h to get the echo signal

y(n) = hTx(n) (1)

where

h = [h0(n) h1(n) .... , hl−1(n)]T ,

x(n) = [x(n) x(n − 1) .... , x(n − l + 1)]T ,
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Fig. 1. Basic AEC Model

and l is the length of the adaptive filter. This echo signal is acousti-
cally added to the near-end speech signal v(n) to get the microphone
signal:

m(n) = y(n) + v(n) + w(n) (2)

where w(n) is the additive background noise. We define the error
signal at time n as

e(n) = m(n) − ĥT(n)x(n) (3)

It is used to adapt the l taps of the AEC’s adaptive filter ĥ(n) to
generate an estimate of the echo,

ŷ(n) = ĥT (n)x(n) (4)

When the near-end talker, v(n) is active or when the speech
comes from both the far-end and near-end, identification of the echo-
path becomes problematic as the adaptive filter coefficients diverge
from the true echo-path if the adaptation is not halted. To prevent
this, a double-talk detector is used to stop the AEC’s filter adapta-
tion during periods of near-end speech.

Instead of using an explicit double-talk detector, we propose
using a variable step size NLMS that automatically addresses this
adaptation control problem. More recently Benesty, et. al. [8] pro-
posed a Nonparametric VSS-NLMS algorithm (NPVSS-NLMS) that
is very easy to control in real world applications. We, derive a novel
near-end energy detector and modify the NPVSS-NLMS algorithm
to handle the double-talk adaptation control problem. A second,
novel VSS-NLMS adaptive algorithm is also introduced. Simula-
tions in the context of acoustic echo cancellation show that the pro-
posed algorithms have better convergence at the same tracking rate
as compared to the classical NLMS algorithm with maximum step

2411-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008



size. More importantly, the proposed algorithms have good immu-
nity to double-talk and no divergence is observed during periods of
near-end speech. Furthermore, both of these variable step sizes have
very low computational complexity.

This paper is structured as follows. We introduce the novel near-
end energy estimator in Section 2. In Section 3, we develop two
novel variable step size NLMS algorithms for echo cancellation. A
comprehensive study on the proposed algorithms is done in Section 4
which is followed by a summary and conclusions in Section 5.

2. NOVEL NEAR-END ENERGY ESTIMATOR

In this section we derive the near-end signal energy estimator (NE-
SEE) and an explicit convergence statistic, which subsequently will
be used in deriving the variable step size algorithms. Referring to
figure 1, the cross-correlation between the far-end vector x(n) and
the residual error e(n) is given by:

rex(n) = E[x(n)e(n)]

= RxxΔh(n − 1)

where E[ ] denotes the mathematical expectation, Rxx = E[xxT]

and Δh(n − 1) = h − ĥ(n − 1). The variance of the cancellation
error e(n) is given by:

σ2
e(n) = E[e2(n)]

= ΔhT (n − 1)RxxΔh(n − 1) + σ2
v(n) + σ2

w(n)(5)

where σ2
v(n) is the power of the near-end signal and σ2

w(n) is the
background noise power.

We define the NESEE as:

γ(n) = σ2
e(n) − 1

σ2
x(n)

rex(n)T rex(n) (6)

≈ σ2
v(n) + σ2

w(n) (7)

where σ2
x(n) is the variance of the excitation signal. The values of

σ2
e(n), σ2

x(n) and rex(n) in equation (6) are exact and not available
in practice. An easily computed estimate is given by:

γ̂(n) = σ̂2
e(n) − 1

σ̂2
x(n)

r̂ex(n)T r̂ex(n) (8)

where the estimates denoted by hat are obtained using the exponen-
tial recursive weighting algorithm, [9] [10]:

r̂ex(n) = λr̂ex(n − 1) + (1 − λ)x(n)e(n)

σ̂2
x(n) = λσ̂2

x(n − 1) + (1 − λ)x2(n)

σ̂2
e(n) = λσ̂2

e(n − 1) + (1 − λ)e2(n) (9)

where λ = 0.97 is the exponential weighting factor. We plot γ(n)
and the true near-end signal energy at a near-end to far-end ratio
(NFR) of -5dB and at a signal to noise ratio (SNR) of 12 dB in Fig-
ure 2. These simulations demonstrate the efficacy of the proposed
statistic, the estimate is almost always equivalent to the true energy.

Next, we look at the echo-path change detection statistic pro-
posed in [11] which is a direct measure of the adaptive filter’s con-
vergence. Referring to figure 1, the cross-correlation between the
microphone signal m(n), and the cancellation error e(n) is given
by:

rem(n) = E[m(n)e(n)]

= hTRxxΔh(n − 1) + σ2
v(n) (10)
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Fig. 2. Tracking near-end energy + background noise at a SNR of
12 dB and NFR of -5 dB.

The variance of the microphone signal is given by:

σ2
m(n) = E[m2(n)]

= hTRxxh + σ2
v(n). (11)

and the variance of the cancellation error e(n) is given in equation
5.

We define our convergence statistic to be

ξ(n) =

�
�
�
�
�

rem(n) − σ2
e(n)

σ2
m(n) − rem(n)

�
�
�
�
�

(12)

substituting equations 10 , 11 and 5 in 12 we get:

ξ(n) =

�
�
�
�
�

ΔhT (n − 1)Rxxĥ(n − 1)

hTRxxĥ(n − 1)

�
�
�
�
�

(13)

We observe from equation 13, for h ≈ ĥ(n − 1), ξ(n) ≈ 0 and

for h �= ĥ(n − 1), ξ(n) > 0. Thus the proposed statistic is a good
measure of the adaptive filter’s convergence. It has been shown in
[11], that the proposed statistic accurately tracks the residual echo
energy due to echo-path variations.

3. VSS-NLMS ALGORITHMS

In this section, we introduce two different novel variable step size
(VSS) NLMS algorithms for effective double-talk control.

3.1. Extension of the Nonparametric VSS-NLMS Algorithm

In this section, we extend the idea of the recently proposed Non-
parametric VSS-NLMS algorithm [8], for effective double-talk con-
trol. The NPVSS-NLMS update equations are given by:

e(n) = m(n) − ĥT(n − 1)x(n) (14)

ĥ(n) = ĥ(n − 1) + μNPV SS(n)
x(n)e(n)

xT (n)x(n) + δ

where

μNPV SS(n) = 1 − σw

σe(n)
(15)

242



0 2 4 6 8 10
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

time in seconds

M
S

E
 in

 d
B

Convergence in the absense of near−end speech

NLMS
VSS−NLMS
NEW−NPVSS−NLMS

Fig. 3. Misalignment of the adaptive filter. (a) NLMS, (b) VSS-
NLMS and (c) NEW-NPVSS-NLMS. The excitation signal is the
white Gaussian noise, L = 512, and SNR is 30 dB.

where σ2
e(n) = E[e2(n)] is the power of the error signal and σ2

w

is the background noise level, which was assumed to be known. In-
stead of using the background noise level σw, we propose using the
near-end + background noise estimate γ(n) proposed in Section 2
i.e.

μNEW−NPV SS(n) =

�
1 − γ̂(n)

σ̂e(n)
if ξ < ε

1 Otherwise.
(16)

where ε is a small positive quantity (ε > 0).
When the filter is converged (ξEP (n) < ε) and double-talk

is introduced, we have, γ(n) ≈ σe(n) ≈ σv(n) and hence the
adaptation step size is μNEW−NPV SS(n) ≈ 0. Further, during
echo-path variations (in the absence of near-end speech), we have,
μNEW−NPV SS(n) = 1 since ξEP (n) > ε. This way, we force
very slow adaptation during periods of near-end speech and fast
adaptation during echo-path variations.

3.2. Novel VSS-NLMS Algorithm

In this section, we introduce a second variable step size NLMS algo-
rithm. The update equations are given by:

e(n) = m(n) − ĥT(n − 1)x(n) (17)

ĥ(n) = ĥ(n − 1) + μV SS(n)
x(n)e(n)

xT (n)x(n) + δ

We define our new variable step size to be:

μV SS(n) =
ξ(n)

ξ(n) + γ(n)
(18)

where ξ(n) and γ(n) are as defined in equations 13 and 7 respec-
tively. When the filter is converged (i.e. ξ(n) < ε) and double-talk
is introduced, we have:

μV SS(n) ≈ ε

ε + σv(n)

≈ 0 (19)

thus, the filter adaptation is almost inhibited. During echo-path vari-
ations ξ(n) >> ε (in the absence of near-end speech), we have,
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Fig. 4. Misalignment of the adaptive filter during double-talk. (a)
NLMS, (b) VSS-NLMS and (c) NEW-NPVSS-NLMS. The excita-
tion signal is the white Gaussian noise, L = 512, and SNR is 30
dB.

γ(n) ≈ σw(n) ≈ ε, hence,

μV SS(n) ≈ ξ(n)

ξ(n) + ε

≈ 1 (20)

Thus, the filter adapts to these new variations.

4. SIMULATION RESULTS

In our simulations, we use 512 taps of a measured room response of
a 10′ × 10′ × 8′ room as the echo-path. The same length is used
for the adaptive filters. We use white Gaussian signal and speech as
the excitation signal. These signals are sampled at 8 kHz. An in-
dependent white Gaussian noise signal is added to the microphone
signal m(n) at a SNR of 30dB. We use the convergence of the nor-

malized misalignment (in dB), 20 log10(‖h − ĥ(n)‖2/‖h‖2), as a
measure of performance. Figure 3 compares the convergence of the
NLMS algorithm (with step size = 1), with the convergence of the
proposed NEW-NPVSS NLMS and VSS-NLMS algorithms. It can
be observed from this figure that when the convergence rate is same
for all the algorithms, NEW-NPVSS NLMS algorithm has a better
misalignment by almost 18 dB. It can also be observed that the VSS-
NLMS is 10dB better than the NLMS.

Next, we study the affects of double-talk on misalignment. Here,
again we use white Gaussian signal as the excitation signal and in-
troduce near-end speech after 2.5 seconds for a period of 5 seconds.
We observe in Figure 4, that the NLMS algorithm diverges dur-
ing double-talk whereas the proposed algorithms are immune. We
observe no divergence during periods of near-end speech for VSS-
NLMS and NEW-NPVSS NLMS algorithms. With these algorithms
we do not need an explicit double-talk detector to inhibit adapta-
tion during periods of near-end speech. This is very desirable and is
computationally very attractive.

Tracking is another important aspect in acoustic echo cancella-
tion, echo-paths vary randomly and rapidly. It is important that an
adaptive filter tracks fast to avoid annoying echo. Figure 5, com-
pares these algorithms during echo-path variations. To create these
variations, the room response is shifted to right by 10 samples af-
ter 5 seconds. According to the simulation, the convergence rate is
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Fig. 5. Misalignment of the adaptive filter during echo-path vari-
ations. (a) NLMS, (b) VSS-NLMS and (c) NEW-NPVSS-NLMS.
The excitation signal is the white Gaussian noise, L = 512, and
SNR is 30 dB.
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Fig. 6. Misalignment of the adaptive filter. (a) NLMS, (b)
VSS-NLMS and (c) NEW-NPVSS-NLMS. The excitation signal is
speech, L = 512, and SNR is 30 dB.

marginally decreased for the proposed algorithms as compared to the
NLMS with its maximum step size. This is the price paid for total
immunity towards double-talk.

Finally we compare our algorithms with speech signals as in-
puts. It can be observed from Figure 6, that proposed algorithms
have similar performance and are substantially better than the NLMS
algorithm with maximum step size.

5. CONCLUSIONS

In any adaptive algorithm, we need to find a compromise between
convergence and steady state misalignment. However, in many ap-
plications this compromise may not be satisfactory. To address this
problem, we have proposed two different novel variable step size
NLMS algorithms. The step size can be easily computed in both the
cases, simulations in the context of acoustic echo cancellation have
shown better performance as compared to the classical NLMS al-
gorithm. Also the proposed algorithms are immune to double-talk,
which is highly desirable and computationally very attractive.
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