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ABSTRACT 

 
This paper proposes a selective coefficient update algorithm for 
reducing the complexity of the proportionate normalized least-
mean-square (P-NLMS) class of algorithms. It is shown that an 
optimal subset of coefficients to update, namely those minimizing 
the a posteriori error, cannot be constructed efficiently. A sub-
optimal block-based coefficient selection algorithm is presented 
that combines proportional weighting of the input signal vector 
with fast ranking methods. It is compared to existing sub-optimal 
algorithms with respect to complexity overhead and convergence 
rate. Simulations show that the proposed algorithm produces 
performance approaching that of the optimal subset while 
maintaining a low coefficient selection overhead. 
 

Index Terms— adaptive echo cancellation, complexity 
reduction, IP-NLMS, selective coefficient update. 
 

1. INTRODUCTION 
 
Echo in telecommunications systems is typically controlled by the 
use of an adaptive echo canceller, which constructs an echo 
estimate to be subtracted from the return-path signal. The 
normalized least-mean-square (NLMS) adaptation algorithm is 
commonly employed in echo cancellers because of its simplicity 
and stability [1]. However, its performance degrades in the 
presence of colored input signals, e.g. speech. To improve the 
convergence rate of NLMS, the class of proportionate (P-NLMS), 
improved proportionate (IP-NLMS), and gradient proportionate 
(GP-NLMS) algorithms was recently proposed [2] – [4]. These 
employ variable step sizes that distribute more update energy to 
higher-magnitude coefficients, increasing the rate of convergence 
at the expense of increased complexity. Exacerbating the problem 
is the increasing use of hands-free terminals and wideband 
telephony, where long adaptive filters are required to model echo 
paths in acoustic environments (up to 250 ms or more in duration), 
and increasing the sampling rate leads to a corresponding increase 
in the filter length. M-Max, periodic, and block-based coefficient 
updates have been proposed to reduce the complexity of NLMS 
[5], [6]. With respect to P-NLMS, in [7] it was proposed to divide 
the adaptive filter into blocks and selectively update blocks of 
coefficients, while [8] applies M-Max update criteria to IP-NLMS. 

This paper proposes an improved selective coefficient update 
algorithm for IP-NLMS, and is organized as follows. IP-NLMS is 
reviewed in Section 2, followed in Section 3 by a derivation of an 
optimal coefficient selection update criteria and the proposed 
algorithm. Section 4 evaluates the proposed and other coefficient 
selection algorithms with respect to performance and complexity. 
 
* This work was funded by an NSERC post-doctoral fellowship. 
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Fig. 1 – Block diagram of an adaptive acoustic echo canceller. 

 
2. ECHO CANCELLER STRUCTURE AND 
PROPORTIONATE NLMS ALGORITHMS 

 
A diagram of an echo canceller in a hands-free telephone is shown 
in Fig. 1. The input signal x(n) is played over a loudspeaker, and 
the microphone signal d(n) consists of echo y(n) and background 
noise η(n). An echo estimate is subtracted from d(n) using an 
adaptive filter which models the echo path as a finite impulse 
response of length N samples: 
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where x(n) and w(n) are the N × 1 input signal and adaptive filter 
coefficient vectors, respectively, at time n. A control mechanism is 
assumed to halt adaptation during near-end speech periods. 

Normalized least-mean-square (NLMS) updates the filter 
coefficients using the instantaneous gradient estimate normalized 
by the input signal power at time n [1]. Proportionate NLMS 
incorporates a diagonal variable-step-size matrix G(n) that is 
constructed proportional to the adaptive filter coefficient 
magnitude [2] – [4]. The IP-NLMS variant incorporates a constant 
factor into G(n) to improve performance in pseudo-sparse 
environments such as in acoustic echo cancellation [3]: 
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where 0 ≤ μ ≤ 2 is the overall step size, δIPNLMS is a regularization 
parameter, and 0 ≤ β ≤ 1 controls the proportionality of G(n). 
NLMS requires approximately 2N multiplication and addition 
operations per sample, whereas IP-NLMS roughly doubles the 
complexity with at least 2N additional multiplications and 
additions per sample. 
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3. SELECTIVE COEFFICIENT UPDATE ALGORITHMS 
 
3.1. Optimal Selective Coefficient Update Criteria 
 
Assume we want to reduce the complexity of IP-NLMS by 
updating a subset of M < N coefficients at each sample period, thus 
eliminating at least N – M multiplication and addition operations. 
Following the approach in [5], we first define the a posteriori error 
ε(n) as the error produced after the update of (2) is applied: 
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Substituting (2) into (5), the squared a posteriori error can be 

written as a function of the a priori error e(n) and a sum of terms 
corresponding to each adaptive filter coefficient update as follows: 
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If only a subset of coefficients are updated, they should be chosen 
such that (6) is minimized. Since the step sizes gi(n) are positive, 
(6) is minimized if the coefficients correspond to the M maxima of 
gi(n)x2(n–i) for 0 ≤ i ≤ N–1. Formally, let I be an ordered set of 
indices ij corresponding to the weighted input samples ranked by 
decreasing magnitude, and let IM be the first M indices of the set: 
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The selective coefficient update that minimizes the a posteriori 
error is obtained by applying (2) only for the M indices within IM: 
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Each input sample is weighted by a unique time-varying step-

size parameter. As such, obtaining an optimal selection using (7) – 
(8) precludes the use of efficient ranking algorithms such as 
SORTLINE [5]. In contrast, finding the M maxima involves 
calculating a sort requiring min{MN, Nlog2N} operations, far more 
than the savings from eliminating N – M updates per sample. 
Clearly a sub-optimal approach must be employed to select 
coefficients. In [7] it was proposed to divide the adaptive filter into 
blocks, and update a subset of blocks containing maximal 
weighted input signal power. As shown in Section 4, that may lead 
to “stalling” due to infrequent updates of blocks with low filter 
magnitudes. In [8] the coefficients to be updated are chosen as the 
M maxima of the input signal vector only, ignoring gi(n). 
 
3.2. Proposed Selective Coefficient Update Algorithm 
 
Our goal is to combine proportionate weighting and fast ranking 

algorithms into the coefficient selection process while avoiding a 
sort of the weighted input signal vector. This is achieved by first 
dividing the input signal and adaptive filter coefficient vectors into 
B = N / L equal-sized blocks of length L: 
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kLLkk nwnwnw ])()([)( 1)1( −−= . For each block wk(n), Mk ≤ 
L coefficients are updated at each sample period and chosen as the 
Mk maxima of the input signal block xk(n). More formally, let Ik be 
an ordered set of indices ij within input block k corresponding to a 
ranking of the L samples by decreasing magnitude. The adaptive 
filter coefficients are updated using (9) – (10), where the indices 
are obtained by selecting the first Mk indices from each set Ik so 
that the total number of updates is equal to M: 
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During convergence periods, a logical approach is to distribute 

updates to blocks in proportion to the step sizes gi(n) so that more 
updates are applied in blocks containing a higher proportion of 
adaptive filter coefficient energy. A uniform distribution of 
updates (M / B per block) should be applied afterwards to allow 
more adaptation in blocks with lower adaptive filter magnitudes. In 
our approach, the updates per block are allocated using an integer 
programming approach. Let Mk(n) represent the time-varying 
number of coefficient updates assigned to block k, and let pk(n) be 
the sum of proportionate step-size parameters within the block: 
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Allocation is performed to maximize the weighted sum of 

updates allocated to each block, constrained by the total number of 
updates and bound on the number of updates per block: 
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where the bounds MMIN,k(n) and MMAX,k(n) are automatically 
increased for periods of high variability and decreased during 
steady-state periods as a function of σk

2(n), an estimate of the 
variance of adaptive filter coefficients in each block: 
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where [⋅] denotes the rounding operator. Equations (20) and (21) 
ensure that the bounds are limited by the block size L and by M / 
B, a uniform distribution of updates among all blocks. 

The proposed algorithm requires maintaining B ranked lists of 
input signal magnitudes corresponding to each block. Since the 
input samples are not weighted by the individual step-size 
parameters, the lists of (13) can be efficiently maintained using the 
SORTLINE algorithm, which in this case carries a total overhead 
of B 2log2(N / B)+2  operations per sample [5]. A more expensive 
task is allocating the number of updates to each block using (15) – 
(21), requiring on the order of 2N + B2 operations. As shown in 
Section 4, in practice it is possible to almost completely amortize 
this cost by performing the allocation periodically. 
 

4. SIMULATION RESULTS 
 
4.1. Experimental Setup 
 
An echo path N = 1024 samples long was obtained from a small 
office at fs = 8 kHz, and is shown in Fig. 2. A coloured input signal 
was constructed from Gaussian noise filtered by a lowpass transfer 
function H(z) = 0.5/(1–0.5z–1), with white noise added to produce a 
signal-to-noise ratio of 40 dB. Convergence was assessed using the 
system distance (error norm) in decibels [1]. Performance was 
assessed for NLMS, IP-NLMS, the full-complexity selective 
coefficient IP-NLMS of (7) – (10), denoted SC-IP-NLMS, the 
proposed algorithm of (13) – (21), denoted VSC-IP-NLMS, the 
block-update algorithm of [7], denoted BSC-IP-NLMS, and the 
magnitude-only algorithm of [8], denoted MSC-IP-NLMS. 
Common parameters of μ = 0.5 and δ = 10-4 were employed to 
achieve the same steady-state error. IP-NLMS variants used β = 
0.5, and VSC-IP-NLMS re-allocated updates every 100 ms. 
 
4.2. Results and Discussion 
 

As M decreases the performance of selective coefficient 
updates degrades relative to IP-NLMS; for the given environment 
it was found that updating  of the coefficients (M = 384) offered 
a reasonable performance tradeoff compared to IP-NLMS. Results 
with this parameter are shown in Figs. 3 – 5. Fig. 3 shows the 
performance of NLMS, IP-NLMS, SC-IP-NLMS and MSC-IP-
NLMS. Fig. 4 shows the performance of SC-IP-NLMS compared 
to the proposed VSC-IP-NLMS algorithm for B = 4, 8, and 16 
blocks. Fig. 5 shows the performance of VSC-IP-NLMS (B = 16) 
compared to BSC-IP-NLMS with B = 32, 64, and 128 blocks. A 
number of observations can be made from these results. The 
overall performance of VSC-IP-NLMS is very close to that of full-
complexity SC-IP-NLMS, and does not vary significantly as the 
number of blocks increases. MSC-IP-NLMS has the slowest rate of 
convergence, which is expected because it does not incorporate 
any proportional weighting into the coefficient selection. In 
contrast, BSC-IP-NLMS exhibits a faster initial convergence than 
VSC-IP-NLMS, but then “stalls”. For BSC-IP-NLMS, blocks with 
higher adaptive filter coefficient magnitude are updated frequently 
even after they have converged. VSC-IP-NLMS adapts to the 
convergence of each block over time, avoiding a similar effect. 
The coefficient selection algorithms are related in terms of 
function and performance by appropriate choice of parameters: 

VSC-IP-NLMS becomes equivalent to MSC-IP-NLMS as B → 1, 
and BSC-IP-NLMS is equivalent to SC-IP-NLMS as B → N. 

Table I compares coefficient selection overhead, defined as the 
sum of operations whose results cannot be re-used for the IP-
NLMS update of (2) – (4). For simplicity it is assumed that each 
such operation is equivalent to a multiplication and addition 
operation required by (2). Within this framework, Fig. 6 shows a 
complexity / performance comparison of the algorithms for  and 

 coefficient updates (M = 128 and 384, respectively) per sample 
period. MSC-IP-NLMS is included as a special case of VSC-IP-
NLMS for B = 1. Performance was assessed as error signal energy 
measured over 12.5 seconds of convergence (less error is better). 
Complexity was assessed with coefficient selection overhead as a 
percentage of selective coefficient update savings. All sub-optimal 
algorithms showed a decrease in performance as the overhead 
decreased. However, the degradation of VSC-IP-NLMS is much 
more gradual than BSC-IP-NLMS as overhead or M decreases. 
This is owing to the fact that VSC-IP-NLMS allows a more 
flexible allocation of updates among blocks than BSC-IP-NLMS. 
 

TABLE I – COMPARISON OF COEFFICIENT SELECTION OVERHEAD. 
Algorithm Operations per Sample 

VSC-IP-NLMS B 2log2(N / B) + 2  
BSC-IP-NLMS ([7]) min{ B2(M / N), Blog2B } 
MSC-IP-NLMS ([8]) 2log2N + 2  

 
5. CONCLUSIONS 

 
A selective coefficient update algorithm was proposed for IP-
NLMS, which when compared to existing algorithms showed an 
improvement in performance with low computational overhead. 
Future work could investigate applying similar techniques to IP-
AP (affine projection) and GP-IP-NLMS algorithms [4]. 
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Fig. 2 – Acoustic echo path of length N = 1024 samples from a 

small office. 
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Fig. 3 – Convergence of NLMS, IP-NLMS, SC-IP-NLMS, and 

MSC-IP-NLMS (M = 384 updates per sample). 
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Fig. 4 – Convergence of SC-IP-NLMS and VSC-NLMS for B = 4, 

8, and 16 blocks (M = 384 updates per sample). 
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Fig. 5 – Convergence of VSC-NLMS (B = 16 blocks) and BSC-

NLMS for B = 32, 64, 128 (M = 384 updates per sample). 
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Fig. 6 – Error signal energy (performance) versus coefficient 
selection overhead (complexity) of SC-IP-NLMS (overhead > 

100%), VSC-IP-NLMS, and BSC-IP-NLMS for (a) M = 128 and 
(b) M = 384 (lower energy and overhead is better). 
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