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ABSTRACT
Audio authentication is important in content delivery via untrusted
intermediaries, for example peer-to-peer (P2P) file sharing. Many
differently encoded versions of the original audio might exist. Dis-
tinguishing the legitimate diversity of encodings from malicious tam-
pering is the challenge addressed in this paper.

We develop an approach based on distributed source coding for
the problem of backward-compatible audio authentication. The key
idea is to provide a Slepian-Wolf encoded quantized perceptually
significant audio projection as authentication data. This version can
be correctly decoded only with the help of authentic audio as side in-
formation. Distributed source coding provides the desired robustness
against legitimate encoding variations, while detecting illegitimate
modification. We demonstrate reliable authentication at a Slepian-
Wolf bitrate of less than 100 bit/s.

Index Terms— Audio authentication, distributed source coding,
LDPC codes

1. INTRODUCTION

Media authentication is important in many applications of content
delivery via untrusted intermediaries, such as peer-to-peer (P2P) file
sharing. In this kind of application, many differently encoded ver-
sions of the original media file might exist. Moreover, transcoding
or other acceptable modification at intermediate nodes might be re-
quired, giving rise to further diversity. On the other hand, intermedi-
aries might tamper with the contents for a variety of reasons, such as
interfering with the distribution of a particular file, piggybacking in-
authentic content, or generally discrediting a particular distribution
system. Distinguishing the legitimate diversity of encodings from
malicious manipulation is the major technical challenge for media
authentication systems. Past approaches fall into two groups: water-
marks and media hashes.

A fragile watermark can be embedded into the host signal wave-
form without perceptual distortion [1]. Users can confirm the au-
thenticity by extracting the watermark from the received content.
The system design should ensure that the watermark survives lossy
compression, but that it breaks as a result of a malicious manipula-
tion. Unfortunately, watermarking authentication is not backward
compatible with previously encoded contents; unmarked contents
cannot be authenticated later. Embedded watermarks might also in-
crease the bitrate required when compressing a media file.

Media hashing [2] achieves verification of previously encoded
media by using an authentication server to supply authentication
data to the user. Media hashes are inspired by cryptographic dig-
ital signatures [3], but unlike cryptographic hash functions, media
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hash functions are supposed to offer proof of perceptual integrity.
Using a cryptographic hash, a single bit difference leads to an en-
tirely different hash value. If two media signals are perceptually in-
distinguishable, they should have identical hash values. A common
approach of media hashing is extracting features which have percep-
tual importance and should survive compression. The authentication
data are generated by compressing these features or generating their
hash values. The user checks the authenticity of the received content
by comparing the features or their hash values to the authentication
data.

In [4], we proposed an extension of hashing for image authen-
tication based on distributed source coding. This paper adapts that
architecture to audio authentication. Our approach has similarities
with secure biometric authentication [5]. They are also related to the
semi-fragile watermarking scheme for images in [6], which, how-
ever, is not applicable to authentication of previously encoded me-
dia.

In our audio authentication proposal, the authentication server
provides a user with a Slepian-Wolf encoded audio projection, and
the client attempts to decode this bitstream using the client’s au-
dio as side information. The Slepian-Wolf result [7] indicates that
the lower the distortion between side information and the original,
the fewer authentication bits are required for correct decoding. By
correctly choosing the bitrate of the authentication data, this insight
allows us to distinguish between legitimate encoding variations of
the audio and illegitimate modifications. In Section 2, we describe
the proposed audio authentication scheme and its rationale in detail.
Simulation results are presented in Section 3.

2. AUDIO AUTHENTICATION SCHEME

Fig. 1 depicts our proposed audio authentication scheme. We de-
note the original source audio as Ao. The client receives the audio
Ac as the output of a two-state lossy channel that models legitimate
and illegitimate modifications. The left-hand side of Fig. 1 shows
that the authentication data consist of a Slepian-Wolf encoded quan-
tized audio projection of Ao and a digital signature of that version.
The verification decoder, in the right-hand side of Fig. 1, knows the
statistics of the worst permissible legitimate channel and can cor-
rectly decode the authentication data only with the help of authentic
audio Ac as side information.

2.1. Two-State Channel

We model the client’s audio Ac by way of a two-state lossy chan-
nel, shown in Fig. 2. In the legitimate state, the channel performs
perceptual coding (such as mp3 or ogg) at a bitrate of 64 kbit/s or
higher. In the illegitimate state, it additionally includes a malicious
attack. We assume that Ao and Ac remain synchronized during these
operations, and discuss this assumption in Section 3.
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Fig. 1. Audio authentication system based on distributed source coding
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Fig. 2. Two-state lossy channel

To study the properties of this channel, we consider 8 audio
tracks of duration about 3 s (65664 samples at 22.05 kHz) as in-
stances of the original audio Ao. In the legitimate state, the client’s
audio Ac is generated by mp3-coding each track Ao at constant bi-
trate 64 kbit/s. In the illegitimate state, additional unauthorized con-
tent is inserted in three steps. First, the mp3-coded version of Ao

is multiplied by an envelope 1
2

+ 1
2

cos(ωt), where ω is chosen so
that the audio duration matches one oscillation period. Then another
track is mp3-coded at constant bitrate 64 kbit/s and multiplied by an
envelope 1

2
− 1

2
cos(ωt). Finally, these two tracks are added together

to produce the client’s audio Ac.

The joint statistics of the input and output vary depending on the
state of the channel. Fig. 3 compares the distribution of the residual
Y −X , where X and Y are projections of the original audio Ao and
the client’s audio Ac, respectively. Each projection produces a se-
quence of pseudorandomly weighted coefficients of tonality [8], and
will be described in Section 2.2. Fig. 3 shows that the legitimate state
of the channel produces a much narrower residual distribution than
the illegitimate state, and it is this difference in the joint statistics of
X and Y that is exploited for authentication.

2.2. Authentication Data Generation

In our authentication system shown in Fig. 1, a pseudorandom pro-
jection (based on a randomly drawn seed Ks) is applied to the orig-
inal audio Ao and the projection coefficients are quantized to yield
X . The authentication data comprise two parts, both derived from
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Fig. 3. The residual distributions between audio projections of chan-
nel input and output in legitimate and illegitimate states

X . The Slepian-Wolf bitstream S(X) is the output of a Slepian-
Wolf encoder based on low-density parity-check (LDPC) codes and
the much smaller digital signature D(X, Ks) consists of the seed
Ks and a cryptographic hash value of X signed with a private key.

The authentication data are generated by a server upon request.
Each response uses a different random seed Ks, which is provided
to the decoder as part of the authentication data. This prevents an
attack which simply confines the tampering to the nullspace of the
projection.

The projection itself is inspired by the coefficient of tonality,
one parameter in a perceptual model for audio [8]. First the audio
is divided into overlapping frames of 256 samples with overlaps of
128 samples. Each frame is windowed sinusoidally and transformed
by the MDCT to create 128 frequency coefficients. The magnitudes
of the frequency coefficients are summed into bins B[i] (for i =
1, . . . , 25) that demarcate the 25 critical bands of human hearing.
The perceptual spreading of energy is modeled by the function

F [i] = 10
0.1

“
15.81+7.5(i+0.474)−17.5

√
1+(i+0.474)2

”
,

so the apparent distribution of energy among the critical bands is
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Fig. 4. Slepian-Wolf bitrates for 3 bits of quantization of X

given by convolution:

C[i] =

25X
j=1

B[j]F [i− j], for i = 1, . . . , 25.

Then a weighted arithmetic mean (AM) and geometric mean (GM)
of C are computed:

μa =

25X
i=1

C[i]w[i]

μg =

25Y
i=1

C[i]w[i],

where w[i] are pseudorandom weights (based on the random seed
Ks), drawn independently from a Gaussian distribution N (1, σ2)
clipped at zero and normalized so that

P
w[i] = 1. We choose

σ = 0.2 empirically. The ratio

WSFM =
μg

μa

is the weighted spectral flatness measure, which is bounded between
0 and 1. The upper bound 1 is achieved if and only if C[i] is constant
for all i, according to the AM-GM inequality. Values near 1 corre-
spond to a relatively flat spectrum, perceived as noisy, while values
near 0 correspond to perception of the frame of audio as tone-like.
Note that WSFM is also invariant to volume change. We then choose
to define the coefficient of tonality α, for our own purposes, as

α = min

„
10 log10 WSFM

−5
, 1

«
,

which is also bounded between 0 and 1, but is inversely related to
WSFM. Thus, the audio projection produces a sequence of coeffi-
cients of tonality, one per frame of audio and each built from differ-
ent weights. The sequence is quantized to form X , a pseudorandom
perceptually significant feature that is invariant to volume change.

The rate of the Slepian-Wolf bitstream S(X) determines how
statistically similar the client’s audio must be to the original to be

declared authentic. If the conditional entropy H(X|Y ) exceeds the
bitrate R, then X can no longer be decoded correctly [7]. There-
fore, the rate of S(X) should be chosen to distinguish between the
different joint statistics induced in the audio by the legitimate and
illegitimate channel states. At the encoder, we select a Slepian-Wolf
bitrate just sufficient to authenticate legitimate mp3 or ogg encod-
ings of the original audio at constant bitrate 64 kbit/s.

2.3. Authentication Data Verification

At the receiver, the user seeks to authenticate the audio Ac with
authentication data S(X) and D(X, Ks). It first projects Ac to
Y in the same way as during authentication data generation. A
Slepian-Wolf decoder reconstructs X ′ from the Slepian-Wolf bit-
stream S(X) using Y as side information. Decoding is via LDPC
belief propagation with a joint bitplane module [9] initialized ac-
cording to the statistics of the legitimate channel state at the worst
permissible quality for the given original audio. Finally, the audio di-
gest of X ′ is computed and compared to the audio digest, decrypted
from the digital signature D(X, Ks) using a public key. If these two
digests are identical, the receiver recognizes audio Ac as authentic.

3. AUTHENTICATION RESULTS

As described in Section 2.1, there are 8 original tracks Ao, each
of duration about 3 s (65664 samples at 22.05 kHz). We operate
the legitimate channel state as perceptual coding using mp3 or ogg
at constant bitrates of 64, 80, 96, 112 and 128 kbit/s. The illegiti-
mate channel multiplies the perceptually coded Ao by an envelope
1
2

+ 1
2

cos(ωt), and then adds another track, coded the same way

as Ao and multiplied by an envelope 1
2

+ 1
2

cos(ωt). As mentioned
in Section 2.1, ω is chosen so that the audio duration matches one
oscillation period. In this way, the illegitimate channel models the
insertion of unauthorized content.

The audio projection X consists of 512 coefficients of tonality,
quantized to between 1 and 8 bits. The Slepian-Wolf codec is im-
plemented using LDPC Accumulate (LDPCA) codes [10] with joint
bitplane decoding [9]. For each combination of Ao and Ac at ev-

227



1 2 3 4 5 6 7 8
0

200

400

600

800

1000

1200

Number of bits of quantization of X

bi
tra

te
 (b

it/
s)

Selected Slepian−Wolf bitrate
Gap to decoding illegitimate audio

Fig. 5. Selected Slepian-Wolf bitrates (in bit/s) for different numbers
of bits of quantization

ery encoding, we measure the least rate for correct decoding of the
Slepian-Wolf coded audio projection S(X).

Fig. 4 summarizes the data for 3 bits of quantization of X . For
each perceptual coding method, a pale bar shows the least rate for
decoding legitimate audio, maximized over all 8 tracks. The cor-
responding dark bar shows the least rate for decoding illegitimate
audio, minimized over the 56 combinations of original and inserted
tracks. The dotted line is the maximum level among pale bars, in-
dicating the selected Slepian-Wolf bitrate for 3 bits of quantization.
This rate of 89 bit/s is just sufficient to authenticate mp3 and ogg
encodings at the lowest desired quality. The size of the gap to the
dashed line (the minimum level among dark bars) justifies our claim
that the Slepian-Wolf bitrate reliably distinguishes between the le-
gitimate and illegitimate audio.

Fig. 5 plots the selected Slepian-Wolf bitrates and the gaps to the
minimum rates for decoding illegitimate audio, as the number of bits
of quantization varies. Observe that 1 bit of quantization requires a
Slepian-Wolf rate of 24 bit/s, but this is insufficient to distinguish
between legitimate and illegitimate channel states. In fact, the prob-
ability of false acceptance of inauthentic audio Ac is 40.5%. On
the other hand, the selected Slepian-Wolf rates for all other levels of
quantization yield zero probabilities of false acceptance. In partic-
ular, a Slepian-Wolf rate of 89 bit/s corresponds to 3 bits of quanti-
zation, which offers the largest rate gap relative to the Slepian-Wolf
rate. Note that our choice for the Slepian-Wolf rate defines the prob-
ability of false rejection of authentic audio Ac to be zero.

We have so far assumed that the original audio Ao and the client’s
audio Ac remain synchronized. This assumption is unjustified; even
in the legitimate channel state, the perceptual coding operation may
delay the audio. In future work, we plan to incorporate unsupervised
synchronization learning into the Slepian-Wolf decoder using an Ex-
pectation Maximization algorithm [11]. We have already demon-
strated this method for joint distributed source decoding and param-
eter learning in the context of stereo image compression [9, 12, 13].

4. CONCLUSION

In this work, we developed a backward-compatible audio authentica-
tion scheme, based on distributed source coding, that distinguishes
between legitimate encoding variations of audio and illegitimately
modified versions. Our system uses a pseudorandom audio projec-
tion that is perceptually significant. A Slepian-Wolf bitrate of less
than 100 bit/s is demonstrated to be sufficient for reliable authen-
tication. At this rate, a single IP packet sent by the server would
suffice to verify the integrity of 2 minutes of audio.
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