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ABSTRACT
Efficient transmission and storage of digital audio signals
can be accomplished using a wide variety of compression
algorithms. To compare and optimize the performance of
such algorithms, objective metrics are often used to measure
the quality of such compressed audio signals since subjec-
tive testing is extremely time consuming. In this paper, we
consider the application of the structural similarity measure,
originally developed for image quality assessment, to the
problem of audio quality assessment. Specifically, we study
two different implementations of the structural similarity in-
dex: the first applies it to short and fixed time-domain frames
of an audio sequence while the second decomposes the au-
dio signals into a non-redundant, time-frequency map and
then compares the structural similarity in the resulting 2-
dimensional domain. We compare the accuracies of the two
structural similarity measures with those of other accepted
objective audio quality metrics relative to MUSHRA-based
subjective audio evaluations.

Index Terms— Structural Similarity, SSIM,MSSIM, Au-
dio quality analysis, PEAQ, objective metric, Quality mea-
surement.

1. INTRODUCTION

Audio compression is widely used to efficiently store and
transmit audio data, and many different algorithms have
been developed. Algorithms that are particularly well-know
include MPEG-1 audio layer 3 (MP3), MPEG-2/4 Ad-
vanced Audio Coder (AAC) and Bit Slice Arithmetic Coding
(BSAC), MPEG-4 Transform Weighted Interleaved Vector
Quantization (TWIN-VQ), Microsoft Windows Media Audio
(WMA), and Dolby Digital (originally called AC-3). These
algorithms significantly reduce the number of bits needed
to represent audio signals while maintaining acceptable per-
ceptual quality. For compression or source coding, objective
metrics like mean square error and segmental signal-to-noise
ratios have often been used to characterize the quality of the
reconstructed signal, but such metrics are generally not pop-
ular for evaluating modern audio codecs (encoder/decoders)
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because such codecs allocate bits using detailed psychoauc-
houstic models of human hearing.
Since the advent of the modern perceptual audio codec in

the late 1980s, many objective quality metrics have been de-
veloped that try to measure human subjective audio quality
[1][2][3][4]. The International Telecommunications Union
(ITU) has put forth recommendation BS.1387, also known
as Perceptual Evaluation of Audio Quality (PEAQ) as an ap-
proach for doing exactly this [5]. PEAQ combines many of
the best available quality metrics available in the early 1990s,
attempting to merge their various strengths. PEAQ however
has been shown to be a poor indicator of perceptual quality
for highly impaired audio [6]. More recently, a new method
called Energy Equalization Truncation (EET) has been intro-
duced, and has been shown to be especially effective as a mea-
sure of the quality in highly impaired audio [7]. EET has also
been combined with the some of the model output variables
(MOVs) from PEAQ to form an audio quality metric that is
more robust over a wide range of audio fidelities [6].
In this paper we study the application of the Mean Struc-

tural Similarity (MSSIM) measure [8], developed to estimate
the reconstruction quality of compressed images, to the prob-
lem of audio quality evaluation. MSSIM is a statistical
method that compares corresponding segments of a given
degraded image with the same segments of the original im-
age, and it has been shown to give results that closely match
subjective test results. This paper is organized as follows. In
Section 2, the MSSIM metric is discussed while in Section 3,
we develop two different ways of applying MSSIM to audio
sequences. Section 4 details our experimental results, and
conclusions and future research directions are presented in
Section 5.

2. STRUCTURAL SIMILARITY INDEX (SSIM)

The structural similarity index is based on the idea that a mea-
sure of change in structural information is a good approxima-
tion to perceived quality change. For example, the audio se-
quences corresponding to the spectrograms in Figure 1 (a) and
(b) have the same mean square errors but very different mean
opinion scores (MOS) and structural similarity index scores.
The sequence in Figure 1 (a) has frequencies truncated above
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Fig. 1. (a) Spectrogram of frequency (with positive frequencies nor-
malized to a range of 0 and 1) truncated audio sequence with additive
white Gaussian noise with MSE 0.04 and MSSIM = 0.38 and (b) au-
dio sequence quantized using BSAC algorithm at 16 kbps with MSE
0.048 and MSSIM = 0.1042.

8 kHz w.r.t. the original (reference) signal, and has a constant
hiss generated by an additive Gaussian noise. On the other
hand, the sequence in Figure 1 (b) is generated by the com-
pressing the audio sequence with the AAC-BSAC algorithm
at 16 kbps. This sequence contains many clicks and clacks
which are much more discernable than the constant audible
hiss of sequence (a).
The structural similarity measure considers three different

measured differences between the original and reconstructed
signals: luminosity, contrast and structure. The luminosity is
a comparison of the mean values of the signals. If x and y are
corresponding segments of audio with N samples each, the
luminosity comparison is given by

l(x,y) =
2μxμy + C1

μ2
x + μ2

y + C1
(1)

where μx = 1/N
∑N

i=1 xi, μy = 1/N
∑N

i=1 yi and C1 =
(K1L)2 whereK1 << 1. The dynamic range of the elements
of x and y is denoted by the variable L.
Ignoring the C1 term, the form of (1) is very similar to

that of the correlation coefficient except with respect to the
two means. The luminosity comparison is not particularly
useful for audio since the mean values do not change much
even with large degradation in the audio sequences (all audio

sequences are essentially zero mean over long segments). Not
surprisingly, we find in Section 5 that when the relative weight
of the luminosity is optimized for the subjective audio test
data, it is small.
The contrast or variance comparison is defined similar to

the luminance comparison given by (1) but with respect to the
relative standard deviations of the two segments: i.e.,

c(x,y) =
2σxσy + C2

σ2
x + σ2

y + C2
(2)

where σx =
(
1/(N − 1)

∑N
i=1(xi − μx)2

) 1
2
,

σy =
(
1/(N − 1)

∑N
i=1(yi − μy)2

) 1
2
and C2 = (K2L)2

whereK2 << 1.
Structure comparison is done after the local mean subtrac-

tion and local variance normalization. Structure comparison
measures the similarity between the twoN -dimensional unit-
norm vectors, x = (x − μx)/σx and y = (y − μy)/σy ,
and it is simply the dot product between the two unit vectors
x·y = xtywhich is an effective way to quantify the structural
similarity between them. This is equivalent to the correlation
coefficient between the original x and y. The structural mea-
sure in terms of the original x and y vectors is given by

s(x,y) =
σxy + C3

σxσy + C3
(3)

where σxy = 1/(N − 1)
∑N

i=1(xi − μx)(yi − μy) and C3 =
(K3L)2 whereK3 << 1.
The similarity comparisons of (1), (2) and (3) also satisfy

the following properties (where ’S’ below can be either ’l’,
’c’, or ’s’):
1. Symmetry: S(x,y) = S(y,x),
2. Boundedness: S(x,y) ≤ 1,
3. Unique maximum: S(x,y) = 1 if and only if each element
of x is equal the corresponding element of y.
Finally, the three components are combined to yield an

overall similarity measure for the segment,

S(x,y)) = f(l(x,y)c(x,y)s(x,y))
= l(x,y)αc(x,y)βs(x,y)γ (4)

where, α > 0,β > 0 and γ > 0 are used to adjust the relative
importance of the three components. The function in (4) also
satisfies the three properties listed above.
The SSIM measure described above is clearly statistically

based. While it is possible to apply SSIM to an entire audio
sequence to extract a single quality number for that sequence,
information about local structure would be lost and the com-
plexity would be quite high. Instead, we calculate the mean
of the SSIM values taken over segments of the original data.
This is advantageous both from a complexity standpoint and
also because it allows for the possibility of an unequal weight-
ing of the segmental SSIM values (e.g., values towards the
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end of the sequence might be weighted more heavily to take
into account that the perceived quality of the most recently
heard audio influences the listener’s opinions of its quality
most heavily). This global measure is referred to as mean
SSIM or MSSIM.

3. APPLYING MSSIM TO AUDIO

Structure in audio can be viewed in two ways. In the first case,
we assume that the structure depends on each time sample and
its position with respect to a small temporal neighborhood of
samples around it. To apply the MSSIM from this point of
view, we split the sequences into temporal frames of length
128 with 50% overlap and then apply the SSIM to each frame
separately. The mean SSIM is calculated by averaging the
individual SSIM values for each frame. Doing this compares
only the temporal structure of the audio sequences. We refer
to this method as the temporal MSSIM (T-MSSIM).
In the second approach, we apply a time-frequency trans-

form to the audio sequences. Specifically, we use a 256-point
Modified Discrete Cosine Transform (MDCT) with a 50%
overlapping window. This represents the audio data as a time-
frequency decomposition. Clearly, this representation of a 1-
dimensional audio sequences is similar to an image as shown
in Figure 1. By applying SSIM to 2-dimensional blocks of
the time-frequency representation, we can evaluate structural
similarities in both the time and frequency domains simulta-
neously. We will refer to this method as the time-frequency
MSSIM (TF-MSSIM).
MDCT used here can be viewed as a critically-subsampled,

quadrature mirror filter bank (QMF). In our case, we imple-
ment the MDCT using a raised sine-shaped window followed
by a cosine transform. The input frame has a 50% overlap
with each adjacent temporal frame.

4. EXPERIMENTS AND RESULTS

We use seven different monoaural audio sequences sampled
at 44.1 kHz for the following experiments. To generate the
different test sets we modify these audio sequences by adding
different types of noise, band-limiting the audio sequences
and applying different audio compression algorithms. The
subjective test results used to compare the MSSIM results
with those of other metrics are obtained from 15 test subjects
using the MUSHRA (MUlti Stimulus test with Hidden Refer-
ence and Anchor) protocol [9].
For the T-MSSIM, the audio sequences are split into time

frames of 128 samples each. In the initial testing, the values
of α, β and γ are simply set at 1, implying that each of the
three components of the metric are equally weighted. Fig-
ure 2, shows the scatter plot of the temporal MSSIM with
respect to subjective test results for 17 different cases. The
solid line represents the regression line between the MSSIM
and subjective results. The correlation coefficient obtained is

Table 1. Exponential weights obtained for the different MSSIM
components

Parameters T-MSSIM TF-MSSIM
α 0.2 0
β 0.5 0.8
γ 0.7 0.2

0.98, which shows that the MSSIM and the subjective tests
are highly correlated. However, from the regression line we
see that there is a bias of 0.21 in the MSSIM data.
Similarly, Figure 3 shows the scatter plot for TF-MSSIM

with respect to subjective test results. The time-frequency
representation is obtained by performing a 256 point MDCT
with an overlap of 128 samples. The individual block size
over which SSIM is performed is of size 8 × 8 samples.
The correlation coefficient obtained by comparing the time-
frequency MSSIM is 0.976, which implies that there is good
correlation between the MSSIM and subjective tests.
The T-MSSIM and TF-MSSIM appear to perform equally

well based on the correlation coefficient with respect to sub-
jective data. From (4) we know that parameters α, β and
γ control the relative importance of the mean, variance and
structure components of the SSIM. To obtain the values of
these parameters so that the MSSIM matches the subjective
tests results, we perform a least squares approximation as fol-
lows. We assume that the MSSIM is approximately equal to
the weighted product of the mean of the luminosity, contrast
and structure components, i.e.

Sm(x,y) ≈ lm(x,y)αcm(x,y)βsm(x,y)γ (5)

The subscript m in (5) implies the mean of the three com-
ponents. Taking the natural logarithm on both sides of (5),
yields the linear equation,

lnSm(x,y) = α ln lm(x,y)+β ln cm(x,y)+γ ln sm(x,y)
(6)

from which a least square approximation of the exponential
parameters can be found, while constraining the parameters
to be positive. Table 1 lists the values for the parameters for
the temporal and time-frequency cases. From this table we
see that the mean or the luminance component is weighted
very low for both the temporal and time-frequency cases. In
T-MSSIM the structural component is emphasized more than
the variance or contrast component while TF-MSSIM is ex-
actly the opposite. Figures 4 and 5 show the scatter plots of
the subjective test results with respect to the weight-optimized
temporal and time-frequency MSSIMs, respectively. The test
set represented in these plots are different from the ones used
to estimate the weights. The correlation coefficients for the
weighted temporal and time-frequency MSSIMs are 0.998
and 0.988 respectively. From the plots we see that the con-
stant bias is reduced and that the correlation coefficients have
not improved significantly.
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Fig. 2. Scatter plot of subjective test results vs. T-MSSIM
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Fig. 3. Scatter plot of subjective test results vs. TF-MSSIM

5. CONCLUSIONS AND FUTUREWORK

In this paper we describe the use of MSSIM in the context
of assessing audio quality. We have presented two different
ways of applying MSSIM to audio data. Experimental results
show that both these methods are equally effective in finding
the audio quality. The optimal weights used to combine the
three components of SSIM are, however, different for each
case. Both these techniques have good correlation to subjec-
tive data even with equal weights.
In the future we would like to validate this technique with

more analysis. Since MSSIM is differentiable, we can max-
imize or minimize over it while keeping the MSE constant
to create pairs of audio sequences which can then be subjec-
tively assessed: if MSSIM is a good perceptual metric, such
min/max-optimized perceptual comparisons should make it
very apparent. Furthermore, if MSSIM can be shown to truly
be a good predictor of perceptual audio quality, then using it
in place of frequency-masking models in audio codecs could
significantly simplify their implementations.
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