
OPTIMIZATION-QUANTIZATION FOR LEAST SQUARES ESTIMATES AND ITS
APPLICATION FOR LOSSLESS AUDIO COMPRESSION

Florin Ghido and Ioan Tabuş
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ABSTRACT

In this paper we study the problem of optimally quantizing the least
square estimates and we introduce a method where the quantized es-
timate vector is obtained by a sequence of interleaved optimization-
quantization scalar stages. We show how the general approach can
be reduced to a simple and ef cient algorithm when connecting it to
the LDLT solver for general LS problems. The application to quan-
tization of the linear prediction coef cients for audio lossless coding
reveals the high performance of the approach, leading to topmost
performance in the class of frame based audio coders, surpassing
signi cantly the performance of the current MPEG4-ALS standard.

Index Terms— optimal quantization, least squares, linear pre-
diction, lossless audio compression, MPEG4-ALS standard.

1. INTRODUCTION

The quantization of LS estimates and tracking the loss of perfor-
mance due to quantization is a generic problem which can be en-
countered in all areas of engineering and science. We consider the
application of least squares linear prediction for asymmetrical loss-
less audio compression, where the prediction coef cients are trans-
mitted as side information, making decoding very fast. The study
of quantization of linear prediction coef cients (LPC) has a long
history and we can distinguish two distinct areas of applications:
the rst is lossy compression (including the important application to
speech coding) and second is frame-wise (or forward) lossless com-
pression. Here we use the later technique and we note that there are
many equivalent representations of LP coef cients, such as re ec-
tion coef cients, log-area ratios of re ection coef cients, and arcsine
of re ection coef cients. Scalar quantization can be applied to any
of these representations, obtaining different results in the nal com-
pression application. We note that the conclusions of most previous
studies were favoring always the alternative representations and con-
sequently the quantization of the direct representation of LPC was
traditionally considered only a bad choice. However, we are going
to show that working with the quantized direct form of LPC we get
remarkably good tradeoff predictor complexity-prediction accuracy,
and having this technique implemented in an audio codec provides
the best performance available in terms of compression ratios and
encoding/decoding times, surpassing all existing methods and stan-
dards in the eld.

1.1. Setting the quantized LS problem

We are given an integer audio signal, mono, stereo, or multichannel,
and we need to make prediction frame-wise, by splitting the signal

This work was supported by the Academy of Finland (application num-
ber 213462, Finnish Programme for Centres of Excellence in Research 2006-
2011).

into nonequal frames of sizes in the range of hundreds to thousands
samples. In the stereo case, for each frame from a given channel,
we select a number of ni regressor samples from the current channel
and a number of nr regressor samples from a reference channel to
create a stereo predictor.

Within a frame of length N , the predictor of x(t) will op-
erate with regressor vectors u(t) of length equal to the maximal
predictor order M (it does not matter if it is a mono, stereo, or
multichannel predictor). We compute the covariance matrix R =PN

t=1 u(t)uT (t), the cross-correlation vector r =
PN

t=1 u(t)x(t),
and the variance σ2 =

PN
t=1 x2(t) as usual in the LS method

[1], making use in the vectors u(t) of the values from previous
frames when needed. We denote w the linear prediction coef cients
for computing the prediction x̂(t) = wT u(t) and we use as the
optimality criterion the sum of squared prediction errors, which
can be written in the form J(w) = σ2 − 2rT w + wT Rw. The
optimal linear prediction coef cients wo = R−1r can be found
by minimizing J(w) and the corresponding optimal criterion is
J(wo) = σ2 − wT

o r, with which we can rewrite the value of the
criterion for an arbitrary w as

J(w) = J(wo) + (w − wo)
T R(w − wo). (1)

1.2. Scalar quantization of prediction coef cients

For a positive integer Q, the uniform scalar quantization of the real
number x will be denoted xQ = round(xQ)/Q and we will use
throughout the paper the convention that a variable with subscript
Q denotes the quantized variable. We can extend this operation to
vectors where quantization is applied element-wise, so that the quan-
tized LS solution is woQ = round(woQ)/Q. Any quantization error
ε = x− xQ can be seen to be bounded in magnitude by 0.5/Q (we
reserve throughout the paper the symbol ε for quantization errors or
for vectors of quantization errors). For practical reasons, Q is gener-
ally chosen to be an integer power of 2, so that the quantization with
Q = 2b will truncate the fractional part of real numbers to b bits.

In a previous paper [2], an iterative method was proposed for
obtaining near-optimal quantized linear prediction coef cients, by
observing that the optimum quantized vector wopt Q is very close to
woQ , with only some small added differences of ±1/Q, ±2/Q, . . .
for each coef cient. However, the search algorithm in the space of
all possible candidates was very laborious, resulting in limited per-
formance improvements when the encoding time was restricted so
that real-time encoding is still possible.

We present a simpler and more ef cient solution where a very
good quantized solution is obtained by optimization arguments
rather than brute force search, with a minimal change of the code
which computes the unconstrained LS solution, and practically with
no added time complexity.
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2. DESCRIPTION OF THE INTERLEAVED
OPTIMIZATION-QUANTIZATION METHOD

2.1. Optimization-quantization for partitioned Least Squares
estimates

The goal is to alleviate the non-optimality of directly quantizing wo,
by splitting wo into two parts, quantizing one of them, and reopti-
mizing the second part to account for the quantization already de-
cided.

We consider a split of the vector w = [wT
1 wT

2 ]T into two com-
ponents w1 and w2 of length n1 and n2 respectively, and we also
de ne the corresponding partitions of the correlation vector r =
[rT

1 rT
2 ]T and of the covariance matrix,

R =

»
R1 RT

3

R3 R2

–
. (2)

The criterion can be rewritten as

J(w) = σ2 − 2rT
1 w1 − 2rT

2 w2 + wT
1 R1w1

+wT
2 R2w2 + 2wT

1 RT
3 w2. (3)

If one xes the solution w2 for the second part of the parameter
vector (e.g., taking the last n2 entries from the quantized woQ ), the
best solution for the free remaining part w1 can be obtained as

R1w
∗
1 = r1 −RT

3 w2. (4)

The new vector formed as w∗ = [w∗1 w2] will correspond to a
criterion

J(w∗) = σ2 − w∗1
T
R1w

∗
1 − 2rT

2 w2 + wT
2 R2w2 (5)

and the criterion for any parameter vector of the form [wT
1 wT

2 ]T

can be written

J([wT
1 wT

2 ]T ) = J(w∗) + (w1 − w∗1)T R1(w1 − w∗1). (6)

We compare now the criteria for the two interesting quantized can-
didates woQ and w∗Q. Denoting the partition woQ = [wT

1 wT
2 ]T we

get

J(woQ) = J(w∗) + (w1 − w∗1)T R1(w1 − w∗1) (7)

J(w∗Q) = J(w∗) + (w∗1Q
− w∗1)T R1(w

∗
1Q
− w∗1). (8)

With an argument similar to the one in Section 2.3, one can show
that generically J(woQ) > J(w∗Q). To give an intuitive explanation
of this we note that the optimization for w1, when the last part w2 is
xed, will always adjust the LS solution to the fact that the last n2

entries are quantized and xed.
Subsequently, it becomes natural to perform repeatedly the

above process, which involved only one possible split of w. Iter-
atively we get a longer and longer vector w2 and we compute w∗1
by (4) each time, while at next iteration we make the length of w2

longer by one, by appending to its top position the last entry from
w∗1Q

and continue so until w2 gets to the full length of w. Such a
process as presented will require solving n− 1 LS problems, where
the size of the unknown vector is successively n − 1, n − 2, . . . , 1.
However, it turns out that the entire process can be implemented by
solving a single LS problem of size n, if one resorts to the LDLT

decomposition of the matrix R and at solving the LS problem by
back-substitution.

First we show how the partitioned LS problem (4) can be solved
using the LDLT decomposition.

Consider the n × n covariance matrix decomposed as R =
LDLT and also consider the partitions listed below:

L =

»
L1 0
L3 L2

–
; D =

»
D1 0
0 D2

–
(9)

where the blocks R1, L1, D1 have dimensions n1×n1; clearly R1 =
L1D1L

T
1 , R3 = L3D1L

T
1 , and R2 = L3D1L

T
3 + L2D2L

T
2 .

We can express the solution (4) in terms of the triangular and
diagonal matrices as

L1D1L
T
1 w∗1 = r1 − L1D1L

T
3 w2

LT
1 w∗1 = D−1

1 L−1
1 r1 − LT

3 w2. (10)

Similarly to the unpartitioned optimal solution which can be ob-
tained by back-substitution from LT wo = D−1L−1r, we can write
the block partitions and use (10) to get»

LT
1 LT

3

0 LT
2

– »
w∗1
w2

–
=

»
D−1

1 L−1
1 r1

LT
2 w2

–
, (11)

which tells that the best solution, which can be obtained by xing to
w2 the last n2 components of the unknown parameters, can be easily
solved by back-substitutions in the rst n1 equations of the system
(11).

But since our goal is to nd only the last entry in w∗1 (not neces-
sarily all entries of w∗1 ), then quantize it and append it to the top of
the vector w2 for preparing the next optimization stage, it becomes
clear that our iterative procedure described initially as a sequence of
n− 1 LS problems can be performed ”in place” just as a single run
of the back-substitution solving, where after solving for an entry of
w, the entry is quantized and is considered as part of w2 in (11) for
the next back-substitution.

2.2. The Optimization-Quantization Least Squares method

We will present now in a detailed way the Optimization-Quantization
Least Squares method (OQ-LS) which resulted from the consider-
ations of the previous section. We rst decompose the covariance
matrix as R = LDLT , with L a lower triangular matrix having all
ones on its main diagonal, and D a diagonal matrix with positive
elements.

We rewrite the equation for the optimal solution Rwo = r as
LDLT wo = r, which is equivalent with

LT wo = D−1L−1r
def
= g. (12)

To get wo one uses in this last form the back-substitution process,
because LT is an upper triangular matrix.

The back-substitution phase and the fact that L has ones on its
main diagonal is the key to our OQ-LS method. We modify the back-
substitution algorithm, resulting now in a vector w̃, different of wo.
We will show that the quantized w̃Q provides a better solution to the
LS criterion than woQ . In the original computation of the current
component k of wo by back-substitution we use the line k from LT ,

wo,k = gk − wo,k+1Lk+1,k − . . .− wo,MLM,k. (13)

In the alternative computation, the k’th component of w̃ is computed
by using the quantized values w̃k+1Q , . . . , w̃MQ , as follows:

w̃k = gk − w̃k+1QLk+1,k − . . .− w̃MQLM,k. (14)

This is used for all k ∈ {M, · · · , 1} until we determine the full w̃
and the desired quantized version w̃Q.

The expression for each scalar quantization error can be written

εk = w̃k − w̃kQ = (g − LT w̃Q)k, (15)

which is bounded in magnitude, |εk| ≤ 0.5Q−1, and vector-wise

ε = D−1L−1r − LT w̃Q. (16)

By substituting D−1L−1r = LT wo, it results ε = LT wo −LT w̃Q.
If we multiply both terms with L−T , we get wo − w̃Q = L−T ε,
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which by (1), and using the decomposition R = LDLT gives

J(w̃Q) = J(wo) + (L−T ε)T (LDLT )(L−T ε) (17)

= J(wo) + εT Dε = J(wo) +
MX

k=1

ε2kDkk, (18)

which shows how the squared elements of ε convert directly to ex-
cess minimum squared error in the optimization criterion, simply
weighted by Dkk. Additionally, we get for a given Q, a strict upper
bound for the worst case criterion as

J(w̃Q) ≤ J(wo) + 0.25Q−2
MX

k=1

Dkk. (19)

2.3. An approximate analysis

Here we attempt to illustrate the differences between the excess
mean square for the two quantized solutions. The relevant terms
to compare are J1 = (woQ − wo)

T R(woQ − wo) =
P

ij ε′iε
′
jrij

(from (1)) and J2 = (w̃Q − wo)
T R(w̃Q − wo) =

PM
k=1 ε2kDkk

(from (18)).
Since the effect of truncation errors is highly nonlinear, we will

attempt just an approximate evaluation of the two terms J1, J2 which
are deterministic and uniquely de ned values, but just for the sake of
illustration we make some assumptions about the distribution of the
vectors ε and ε′ containing the rounding errors and we will compare
the expected values of the expressions J1, J2, for a xed matrix R.

We will assume that all the rounding errors are independent and
identically distributed with zero mean and variance σ2

ε , so that the
covariance matrices are EεεT = Eε′ε′T = σ2

ε I .
Furthermore we will assume the matrix R to be symmetric

Toeplitz (corresponding to a least square problem where the regres-
sor vectors have the shifting property) for which it is well known

that the (k + 1)’th element, Dk+1,k+1 = r0 − w
[k]
o

T
R[k]w

[k]
o , of

the diagonal matrix D in the LDLT decomposition is the energy
of the optimal prediction errors obtained with the optimal predic-

tor, w
[k]
o = R[k]−1

r[k], of order k (see e.g. [1]). The expected
value of the excess mean square for the newly proposed quanti-

zation is EJ2 = σ2
ε

PM−1
k=0 (r0 − w

[k]
o

T
R[k]w

[k]
o ). The expected

value of the excess mean square for the direct quantization of wo is
EJ1 = Eε′T Rε′ = trace(REε′ε′T ) = Mr0σ

2
ε . Now it is obvious

that EJ1 > EJ2 due to the fact that each term r0 −w
[k]
o

T
R[k]w

[k]
o ,

except the rst one, is much smaller than r0 for well predictable
signals, which is the case with audio signals.

3. IMPLEMENTATION

The lossless audio compressor used in the tests, dubbed here
OptimFROG-AS [3], is loosely based on OptimFROG [4], but
in an asymmetrical setting. It compresses mono, stereo, and multi-
channel audio les at any bit depth and sampling rate. It employs
stereo prediction [5], adaptive segmentation, and adaptive predic-
tion orders, with prediction coef cients saved in direct form, and a
variant of arithmetic coding.

The proposed OQ-LS method can be implemented as a slight
modi cation of the LS solving based on back-substitution. We as-
sume we have the decomposition R = LDLT and we already ob-
tained LT wo = D−1L−1r = g. The OQ-LS method differs only in
the back-substitution phase, for the computation of w̃Q.

Computational complexity of the back-substitution phase is the
same as the non-quantized LS method using LDLT decomposition,

being O(M2). In OQ-LS, for each quantization parameter Q we run
the back-substitution phase and compute the criterion in O(M2). In
the non-quantized LS method, the exact coef cients are computed
only once, requiring O(M2), then are quantized in O(M), but we
also have to separately compute the criterion (1), requiring O(M2)
for each quantization parameter Q. Thus, the overall computational
complexities of the two methods are the same.

4. EXPERIMENTAL RESULTS

We tested the proposed OQ-LS method integrated in the lossless au-
dio compressor on a corpus consisting of 80 one minute CD Audio
les (44.1 kHz, 16 bit, stereo), produced by extracting the middle

minute of the third track from a 80 CD large corpus. For the mono
tests, we split each stereo le in two mono les corresponding to left
and right channels, producing 160 les.

We compared the following compressors: a) OptimFROG-AS
using traditional scalar quantization (OFA-OLD), b) OptimFROG-
AS using quantization by the OQ-LS method (OFA-NEW), and c)
MPEG-4 ALS standard [6] (Audio Lossless Coding) version RM18
(ALS-V18). We ran the tests on a Intel P4 at 2.8 GHz machine and
measured execution times accurately using the total process time.

In order to provide a fair comparison of the ef ciency of the
coef cient representations, we matched OFA and ALS-V18 so that
they will have the same xed frame size, xed prediction orders,
independent block sizes, and both use arithmetic coding.

For the mono case, we set for OFA the xed predictor order
ni = 16, xed frame size 1764, independent blocks of 10 seconds,
and for equivalence, for ALS-V18 we use: ’-b’ (BGMC codes), ’-g0’
(block switching off), ’-n1764’ (frame size 1764), ’-o16’ (prediction
order 16), and ’-r100’ (random access frame each 10 seconds).

Compressor quantization Compressed Encoding Decoding
bits/coeff. size (%) time (s) time (s)

OFA-NEW 0-8 (LP) 62.2817 175.4 87.4
OFA-NEW 0-15 (LP) 62.2853 184.8 86.3
OFA-NEW 6 (LP) 62.3506 165.8 87.4
OFA-OLD 0-15 (LP) 62.3783 189.5 88.4
OFA-NEW 8 (LP) 62.4000 166.5 88.6
OFA-OLD 0-8 (LP) 62.4137 176.3 87.3
OFA-OLD 8 (LP) 62.5060 165.8 87.8
ALS-V18 6 (RC) 62.5981 185.4 141.0
OFA-OLD 6 (LP) 63.2350 166.2 88.1

(a)

Compressor quantization Compressed Encoding Decoding
bits/coeff. size (%) time (s) time (s)

OFA-NEW 0-15 (LP) 59.9096 230.6 86.1
OFA-NEW 0-8 (LP) 59.9379 220.6 85.6
OFA-NEW 6 (LP) 60.0471 208.8 85.6
OFA-OLD 0-15 (LP) 60.0482 231.5 85.5
OFA-NEW 8 (LP) 60.0806 211.9 85.9
OFA-OLD 0-8 (LP) 60.2566 219.6 86.2
OFA-OLD 8 (LP) 60.4659 209.3 85.5
ALS-V18 6 (RC) 60.5786 832.6 144.4
OFA-OLD 6 (LP) 61.8549 207.9 85.7

(b)

Table 1. Overall compressed size (in percents, lower is better) sorted
by compressed size; best quantization precision for each frame was
searched within the speci ed bits; (a) mono, (b) stereo.

In Table 1 we can see that the new method achives the best re-
sults. The new quantization with 6 bits provides near optimal com-
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Fig. 1. Misadjustment of the squared error for Q = 64.
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Fig. 2. Overall compression vs. average decoding speed (top) and
overall compression vs. average encoding speed (bottom) for ALS-
V18 with maximum order 12, 24, 32, 36, 48, 64, 80, 96, 128, 144,
and 192 and OFA-NEW with maximum stereo orders 8/4, 16/8,
24/12, 32/16, 48/32, and 64/32 (data points are from right to left).

pression, and ALS-V18 (using quantization with 6 bits for re ection
coef cients) provides the second worst compression.

For the stereo case, we set additionally for OFA the xed side
predictor order nr = 6 and for ALS-V18 we added ’-t2’ which
chooses for each frame the best between joint stereo and multichan-
nel correlation (using 3+3 coef cients). The ordering of the overall
performance is the same as in the mono case.

To illustrate the performance of the quantization using the OQ-
LS method, we used a constant value for Q and investigated the dis-

tribution of the misadjustment Jex(wtest)
def
= J(wtest)/J(wo)−1,

where wtest is either woQ or w̃Q. We used one of the stereo les (the
one extracted from the ’Enya - Greatest Hits’ CD), frame size 2205,
and stereo prediction with xed ni = 16 and nr = 8, all set to
match the test made in [2].

For 6 bit quantization, Q = 64, the empirical distribution of
Jex is shown in Figure 1, from which we also mention the aver-
age and maximum values: the direct quantization method obtains
avg(Jex(woQ)) = 32.25, max(Jex(woQ)) = 1826.34, the OQ-LS
algorithm obtains avg(Jex(w̃Q)) = 0.05, max(Jex(w̃Q)) = 1.05,
while [2] obtained an average of 0.17 and a maximum of 5.47, but
only when using a large number of iterations, showing that the new
quantization method is very effective.

We have compared OFA-NEW and ALS-V18 on the same stereo
corpus, for several maximum prediction orders. We used for OFA-
NEW adaptive segmentation with maximum 32 segments (ALS also
uses up to 32 segments), with a unit size of 588 samples (ALS equiv-
alent is 640 samples). For a fair comparison we used for ALS-V18
optimal compression settings for a given maximum order as ”-7 -
oMAX ORDER -t2”, but without using long time prediction (LTP).

In Figure 2 we can see that for the same compressed size, the
decompression for OFA-NEW is signi cantly faster than for ALS-
V18 (1.7 times faster for low complexity and about 4 times faster
for high complexity). The highest compression achieved by ALS-
V18 with maximum order 192 is achieved by OFA-NEW with much
shorter stereo predictors, bounded above by ni = 32 and nr = 16.
For encoding, we can see that for the same compressed size, OFA-
NEW is signi cantly faster than ALS-V18 (4 times faster for low
complexity and up to 2 times faster for high complexity).

5. CONCLUSIONS

We have presented a novel method for nding optimally quantized
solutions for least squares estimates (OQ-LS) and we applied it to
lossless audio compression. When integrated into an asymmetrical
lossless audio compressor, the overall achieved performance is su-
perior to the MPEG-4 ALS standard.
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