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ABSTRACT

Monaural musical sound separation attempts to segregate dif-
ferent instrument lines from single-channel polyphonic mu-
sic. We propose a system that decomposes an input into time-
frequency units using an auditory filterbank and utilizes pitch
to label which instrument line each time-frequency unit is as-
signed to. The system is conceptually simple and computa-
tionally efficient. Systematic evaluation shows that, despite
its simplicity, the proposed system achieves a competitive le-
vel of performance.

Index Terms— musical sound separation, computational
auditory scene analysis, pitch-based labeling

1. INTRODUCTION

As the demand for automatically analyzing, organizing, and
retrieving a vast amount of online music data explodes, musi-
cal sound separation has attracted significant attention in re-
cent years. Monaural separation that attempts to recover each
source/instrument line from single-channel polyphonic mu-
sic is a particularly challenging problem. On the other hand,
a system possessing such functionality allows more efficient
audio coding, accurate content-based analysis, and sophisti-
cated manipulation on musical signals [1].

In music multiple instruments often play simultaneously.
The polyphonic nature of music creates unique problems for
monaural musical sound separation. One such problem is
overlapping harmonics where a harmonic of one note has a
frequency that is the same as or close to the frequency of a
harmonic from another concurrent note. The phenomenon
of overlapping harmonics is common since Western music
favors notes that are harmonically related—pitches are in a
simple integer ratio [2]. It is in general difficult to recover
each individual harmonic without instrument-specific knowl-
edge. The interplay of different instrument lines also makes
the independence assumption of sound sources invalid.

Broadly speaking, existing monaural musical sound sepa-
ration systems are either based on traditional signal process-
ing techniques (mainly sinusoidal modeling), statistical tech-
niques (such as sparse coding and nonnegative matrix factor-
ization), or psychoacoustic studies (computational auditory
scene analysis).

The basic idea of sinusoidal modeling is to model a sound
as a linear combination of sinusoids with time-varying fre-
quencies, amplitudes, and phases. The task of musical sound
separation is to estimate these parameters for each source from
music. Virtanen [1] estimates parameters of sinusoids us-
ing least mean square estimation and applies spectral enve-
lope modeling to address the problem of overlapping har-
monics. Every and Szymanski [3] extract sinusoids using
a technique called spectral filtering. Sinusoidal modeling is
primarily used for pitched sounds. When the pitch of each
sound source can be accurately estimated or known a priori,
sinusoidal modeling usually gives good results for low poly-
phonies.

Statistical approaches to musical sound separation gener-
ally assume certain statistical properties of sources. Sparse
coding assumes that a source is a weighted sum of bases from
an overcomplete set. The weights are assumed to be zero with
high probability, i.e., most of the bases are inactive most of
the time [4]. Although nonnegative matrix factorization at-
tempts to find a mixing matrix and a source matrix with non-
negative elements such that the reconstruction error is mini-
mized, it implicitly requires the mixing weights and source to
be sparse [5]. Several recent systems [6, 1] have demonstrated
the applicability of statistical approaches. However the effec-
tiveness of such approaches on a broad range of tasks remains
to be seen.

Computational auditory scene analysis (CASA) is inspired
by auditory scene analysis (ASA) [7], an influential percep-
tual theory which attempts to explain the remarkable capabil-
ity of the human auditory system in sound separation. CASA
aims to build computational systems for general sound sepa-
ration. Several CASA systems have been developed for musi-
cal sound separation. Mellinger’s work [8] represents the first
CASA attempt to the task. Brown and Cooke [9] proposed a
system which includes organizational cues such as pitch for
separation. The system by Godsmark and Brown [10] uses a
blackboard architecture to reconcile different organizational
cues. However, the performance of existing CASA-based
separation systems is limited.

Pitch has been shown to be very effective in organizing
frequency components from a source. In this paper, we pro-
pose a pitch-based CASA system to separate music with two
concurrent pitched sounds. Section 2 provides a detailed de-
scription of the proposed system. Evaluation and comparison
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Fig. 1. Schematic diagram of the proposed system.

are presented in Section 3. The last section concludes the pa-
per.

2. SYSTEM DESCRIPTION

Our proposed system is illustrated in Fig. 1. The input to the
system is monaural polyphonic music. In the time-frequency
(T-F) decomposition stage, the system decomposes the input
into its frequency components using an auditory filterbank
and divides the output of each filter into overlapping frames.
We call an element indexed by frame and frequency a T-F
unit. In the next stage, an auditory representation, called the
correlogram, is computed. At the same time, the pitches of
different instrument lines are detected in the multiple pitch
detection module. Multiple pitch detection for music is a
very difficult problem. Since the main focus of this study
is to investigate the performance of pitch-based separation in
music using auditory representations, we do not perform mul-
tiple pitch detection (indicated by the dashed box); instead we
supply the system with ideal pitches detected from premixing
instrument lines. In the pitch-based labeling stage, pitches are
used to determine which instrument line each T-F unit should
be assigned to. This creates a binary mask for each line. In
this paper we do not attempt to separate overlapping harmon-
ics and we leave it for future study. In the final stage of the
system, the masks are used to resynthesize individual instru-
ment lines. The details of each stage are explained in the
following subsections.

2.1. Time-Frequency Decomposition

In this stage, the input sampled at 20 kHz is first decomposed
into its frequency components with a 128-channel gamma-
tone filterbank, which is a widely used auditory filterbank to
model cochlear filtering [11]. The impulse response of a gam-
matone filter is

g(t) =
{

tl−1exp(−2πbt)cos(2πft), t ≥ 0
0, else,

(1)

where l = 4 is the order of the filter, f is the center frequency
of the filter, and b determines the bandwidth of the filter.

Usually the center frequencies of the filters are linearly
distributed on the so-called “ERB-rate” scale, E(f), which is
related to frequency by

E(f) = 21.4 log10(0.00437f + 1). (2)

It can be seen from (2) that the center frequencies of the filters
are approximately linearly spaced in the low frequency range
while logarithmically spaced in the high frequency range. There-
fore more filters are placed in the low frequency range where
most sound energy is concentrated.

The bandwidth b of a fourth-order gammatone filter is
usually set to be

b(f) = 1.019 ERB(f), (3)

where ERB(f) = 24.7 + 0.108f is the equivalent rectangu-
lar bandwidth of auditory filters. This bandwidth is adequate
for most speech separation tasks where the intelligibility of
separated speech is the main concern. However for music
sound separation, b(f) defined as (3) appears too wide for
accurate analysis and resynthesis, especially in the low fre-
quency range. We have found that using narrower bandwidth
can significantly improve the quality of separated sounds. In
this study we set the bandwidth to b(f) = 1.019 ERB(f)/4, a
quarter of the conventionally used value. The center frequen-
cies of channels are spaced from 50 to 8000 Hz.

After auditory filtering, the output of each channel is di-
vided into frames of 20 ms with 50% overlap.

2.2. Correlogram

After T-F decomposition, the system computes an autocorre-
lation for each T-F unit. This produces a correlogram, the
well-known mid-level auditory representation [11]. Specifi-
cally, for each T-F unit ucm, where c is the frequency channel
index and m the frame index, we calculate autocorrelation as
following:

A(c,m, τ) =
K−1∑
k=0

h(c,mT −k)h(c,mT −k−τ)w(k). (4)

h(c, ·) is the output of frequency channel c and K is the frame
length. T is the frame shift, τ the time delay, and w a rectan-
gular window with length K.

2.3. Pitch-based Labeling

After the correlogram is computed, we label each ucm using
ideal pitches. If there is only one source at frame c, all ucm’s
of the frame are assigned to the active source.

For frames with two sources, we consider the values of
A(c,m, τ) at time lags that correspond to two different pitch
periods, τ1 and τ2. If in ucm only one source is present, e.g.,
the first one, then A(c,m, τ1) > A(c,m, τ2) unless τ1 and τ2

are in harmonic relation. If two harmonics overlap in ucm,
one should assign the ucm to the source with higher energy.
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A natural choice is to compare A(c,m, τ1) to A(c,m, τ2) to
see which one has a higher value. Intuitively if one harmonic
has a higher amplitude than the other, the peak in the auto-
correlation function would be closer to τ1 than τ2. We have
conducted simulations to check this intuition. For each fre-
quency channel, we create a cosine with the center frequency
of the channel. We then create another cosine whose fre-
quency ratio to the first one is uniformly distributed from 1
to 1.03, which corresponds to a semitone. The relative ampli-
tude and phase of the second cosine to the first are uniformly
distributed in the range of [0, 0.5] and [0, 2π], respectively.
We find that, although our intuition is not strictly true, it is
valid most of the time. Therefore we use two pitch periods to
directly label each T-F unit. Specifically, ucm is labeled 1 if
A(c,m, τ1) > A(c,m, τ2), and 0 otherwise.

2.4. Resynthesis

With the masks obtained in the pitch labeling stage, each in-
dividual instrument line can be resynthesized from the out-
puts of the gammatone filterbank. This is achieved using a
technique introduced by Weintraub [12] (see also [11]). The
resynthesis pathway allows the quality of separated lines to be
assessed by human listeners or measured by signal-to-noise
ratio (SNR) before and after separation.

3. EVALUATION

To evaluate the proposed system, we constructd a database
consisting of 20 pieces of quartet composed by J. S. Bach.
Since it is difficult to obtain multi-track signals where differ-
ent instruments are recorded in different tracks, we generate
audio signals from MIDI files. For each MIDI file, we use the
tenor and the alto line for synthesis since we focus on sepa-
rating two concurrent instrument lines. Audio signals could
be generated from MIDI data using MIDI synthesizers. But
such signals tend to have stable spectral contents, which are
very different from real music recordings. In this study, we
use recorded note samples from the RWC music instrument
database [13] to synthesize audio signals based on MIDI data.
First, each line is randomly assigned to one of the four instru-
ments: a clarinet, a flute, a violin, and a trumpet. After that,
for each note in the line, a note sound sample with the clos-
est average pitch is selected from the samples of the assigned
instrument and used for that note. Details about the synthesis
procedure can be found in [14]. Admittedly, the audio signals
generated this way are a rough approximation of real record-
ings. But they show realistic spectral and temporal variations.
Different instrument lines are mixed to 0 dB SNR for separa-
tion. The first 5-second signal of each piece is used for testing.
The pitches of each instrument line are detected using Praat
[15].

Fig. 2 shows an example of separated instrument lines.
The top panel is the waveform of a mixture, created by mix-
ing the clarinet line in Fig. 2(b) and the trumpet line in Fig.
2(d). Fig. 2(c) and Fig. 2(e) are the corresponding sepa-
rated lines. The second separated line is very close to the
original one while the first separated line has some noticeable
differences for several notes. Sound demos can be found at
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Fig. 2. An separation example. (a). A mixture. (b). The
first line by a clarinet. (c). The separated first line. (d). The
second line by a trumpet. (e). The separated second line.

http://www.cse.ohio-state.edu/˜liyip/Research/Publication/20
07/mss demo.htm.

We calculate SNR gain before and after separation to quan-
tify the system’s performance. To compensate for distortions
introduced in the resynthesis stage, we pass a premixing sig-
nal through an all-one mask and use it as the reference signal
for SNR calculation. Table 1 shows the SNR gains for differ-
ent systems as well as when prior information is available.

The first row in Table 1 gives the SNR gain by the Hu-
Wang system, an effective CASA system for voiced speech
separation. The Hu-Wang system has the same time-frequency
decomposition as ours, but following that it implements the
two stages of segmentation and grouping, and utilizes pitch
and amplitude modulation as organizational cues for separa-
tion. The Hu-Wang system has a mechanism to detect the
pitches of one source. For comparison purposes, we supply
the system with ideal pitch and adjust the filter bandwidth
to be the same as ours. Although the Hu-Wang system per-
forms well on voiced speech separation [16], our experiment
shows that it is inadequate for musical sound separation. The
proposed system, the fourth row in Table 1, performs 2.1 dB
better than theirs by utilizing both pitches.

Virtanen’s system is based on sinusoidal modeling. At
each frame, his system uses pitch information and least mean
square estimation to simultaneously estimate the amplitudes
and phases of harmonics of all instruments. His system also
uses a so-called adaptive frequency-band model to recover
each individual harmonic for overlapping harmonics [1]. To
avoid inaccurate implementation of his system, we sent our
test signals to him and he provided the output. Note that his
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Methods SNR Gain (dB)
Hu and Wang 9.1

Virtanen 11.1
Proposed 11.2

Ideal Binary Mask 15.3

Table 1. SNR Gains

results are also obtained using ideal pitch. The average SNR
gain of his system is shown in the third row of Table 1. De-
spite our simple use of pitch information and lack of handling
overlapping harmonics, our system achieves the same perfor-
mance as his.

Since our system is based on binary masking, we calculate
the SNR gain of ideal binary masks which can be constructed
with premixing instrument lines as following. After T-F de-
composition, the energy of each T-F unit is calculated. A T-F
unit is labeled 1 if the energy of the first instrument line is
stronger than that of the second, and 0 otherwise. Although
overlapping harmonics are not separated by the ideal binary
mask, it can still give high-quality sounds free of artifacts.
The SNR gain of the ideal binary mask is shown in the last
row of Table 1. Compared to the ideal binary mask, the pro-
posed system performs 4.1 dB worse, which suggests room
for further improvement.

4. CONCLUSION

In this paper, we have proposed a CASA system for monaural
musical sound separation. We label each T-F unit solely based
on the values of the autocorrelation function at time lags cor-
responding to two pitch periods. The SNR evaluation shows
the proposed system is as effective as more complicated si-
nusoidal model-based systems. Besides auditory filtering, the
main computation of our system is to obtain the values of au-
tocorrelation at two time lags at each T-F unit. Note that the
calculation of a full correlogram is unnecessary, i.e., the sys-
tem does not need to calculate autocorrelation for all possible
time lags. We believe there is considerable room to improve
our system. For example, segmentation and grouping, the two
stages widely adopted in CASA, can be applied to make unit
labeling more reliable. One can also first identify T-F units
that are reliably labeled and use those T-F units to further pro-
cess unreliable T-F units. We will pursue these directions in
our future study.
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