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ABSTRACT

We propose a new approach for singer melody extraction, based on
blind source separation techniques. The short time Fourier trans-
form (STFT) of the singer signal is modelled by a Gaussian mix-
ture model (GMM) explicitly coupled with a generative source/filter
model. We then introduce a simplification of this general GMM and
approximate the STFT of the music signal using Non-negative Ma-
trix Factorization (NMF) techniques. The melody line is extracted
from the explicit source component of the model thanks to a Viterbi
algorithm. The results are very promising and comparable or better
than those of state-of-the-art systems.

Index Terms— Music, Source/Filter Model, Blind Source Sep-
aration, Spectral Analysis, Non-Negative Matrix Factorization

1. INTRODUCTION

When listening to a song, a human listener can easily focus on the
melody sung and separate it from the background music. There is a
growing effort in the community to provide a machine with the capa-
bilities to perform singer melody extraction from polyphonic music,
i.e. to transcribe the sequence of notes sung by a human performer
on accompanying background music. In fact it is especially useful in
applications such as Query-By-Humming, where it could automati-
cally generate the melody database out of the original song database,
without the need of having them encoded as MIDI files. It could also
provide a natural way to compare songs and identify cover-versions.
Furthermore, the separation of the lead vocal part opens the path for
Demix/Remix and Karaoké applications.

Traditional methods for melody extraction from polyphonic
mixtures are based upon a multipitch estimation followed by a
melody tracker that finds the most probable melodic line (e.g. [4]
or [7] for an overview of ISMIR evaluations).

An alternative approach would rely on a prior source separation
step. For example in [6], such a separation is performed by means
of an adaptive Wiener filter. More precisely, the authors model the
short term Fourier transform (STFT) X(f, t) of the signal x(t) as
the sum of two spectra: V (f, t) for the singer’s voice and M(f, t)
for the background music where each of them is characterized by a
Gaussian Mixture Model (GMM). The estimate of the desired voice
(singer or music) is then computed thanks to an adaptive Wiener
filter applied to the original STFT. Although this approach obtains
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satisfying results, it suffers from two major limitations: firstly, the
GMM does not permit to easily take into account the specific char-
acteristics of music (multiple sources, multiple notes) at a reasonable
complexity; secondly, the model of singing voice is relatively crude
and does not include any dependence of its timbre with the funda-
mental frequency.

Considering these limitations, we propose a new approach
which includes a source/filter model of the singing voice and a
model for the background music that is derived from [1] that can be
efficiently estimated by means of Non-negative Matrix Factorization
(NMF) techniques. In this framework, we estimate the fundamental
frequency of the singing melody.

The paper is organised as follows: in section 2, we introduce
the signal model. The parameter estimation is then described in
section 3. We give some results, and compare the performance of
our system to state-of-the art results obtained during an international
evaluation (MIREX06’s audio melody extraction task). Finally, we
suggest some conclusions.

2. SIGNAL MODEL

The signal x(t) is considered as the mixture of the singer voice signal
v(t) and the background music m(t): x(t) = v(t) + m(t). We
also assume that these signals are independent. This does not really
hold in the case of songs, where the singer is in accordance with the
background music, creating a certain coupling between the signals.
This is a simplifying assumption. Since we consider signals that
are supposed to have rather characteristic spectra, especially with
specific spectral envelopes, this hypothesis is not unreasonable.

As stated in [1], we will assume signal spectra to be zero-mean
Gaussian, with a diagonal covariance matrix whose diagonal ele-
ments are equal to the signal power spectrum density (PSD). This
is a reasonable assumption since the signal can be considered quasi-
stationary on small analysis windows .

We denote matrices with capital letters, the size of SFTF matri-
ces generally is N ×T where N is the number of frequency bins and
T the number of analysis frames.

2.1. Singer Voice Model

We propose to include a pitch dependency in the model introduced
in [6], by means of a source/filter model. We only consider the
pitched part of the vocal signal. Therefore the source will be only
characterized by spectral combs. On those pitched parts, the filters
usually are related to the pronounced vowels and the corresponding
spectral envelopes exhibit the formants, i.e. the resonances of the
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vocal tract. We introduce first the assumed GMM and then the sim-
plified model which we propose.

In the GMM framework, the state space is discretized, one state
is defined by the couple (k, f0) where k is the index of the filter spec-
tral envelope {σ2

k(f); f ∈ [1, N ]} and f0 the index of the source
spectral comb {σ2

f0(f); f ∈ [1, N ]} . Let K be the maximum
number of possible vowels, Nnotes be the number of fundamental
frequencies for the source part. These frequencies lie in a range cov-
ering the human voice frequencies, here from 100 Hz to 800 Hz.
They are discretized such that two successive frequencies are distant
of 1

8
tone. We generate these spectra according to a glottal source

model: KLGLOTT88 [5]. For each frame t, the singer voice signal
Vt = [V (1, t) . . . V (N, t)]T knowing the states k(t) ∈ [1, K] and
f0(t) ∈ [1, Nnotes] follows a normal distribution such that:

V (f, t)|k(t), f0(t) ∼ Nc(0, σ2
k(t),f0(t)(f)) (1)

where σ2
k(t),f0(t)(f) = a2

k(t)(t)σ
2
k(t)(f) × a2

f0(t)(t)σ
2
f0(t)(f) and

Nc is the Gaussian circular distribution 1 . a2
k(t) and a2

f0(t) are am-
plitude factors, so that we can deal with different dynamics without
having one state per dynamic.

Finally, let ωk (resp. νf0 ) be the a priori probabilities of state k
(resp. f0) . The likelihood of the GMM for the singer voice can be
written as:

p(Vt) =
X
k,f0

ωkνf0p(Vt|k, f0)

However, due to the heavy computational load of the parameter
estimation using for example an Expectation-Maximization (EM) al-
gorithm [6], we propose below a simpler model which reduces the
number of states to one global state. It is then possible to avoid the
EM algorithm and find a faster way of estimating the parameters, as
shown in section 3. First, let us notice that it is more convenient to
rewrite σ2

k(t),f0(t)(f) in equation (1) as:

σ2
k(t),f0(t)(f) =

X
k,f0

a2
k(t)σ2

k(f)a2
f0(t)σ

2
f0(f)1{k=k(t),f0=f0(t)}

=
X

k

ã2
k(t)σ2

k(f) ×
X
f0

ã2
f0(t)σ

2
f0(f) (2)

where 1{k=k(t),f0=f0(t)} = 1 if k = k(t) and f0 = f0(t), and 0
otherwise, ãk(t) = ak(t)1{k=k(t)} and ãf0(t) = af0(t)1{f0=f0(t)}.

Let ΣK the N × K matrix such that ΣK(f, k) = σ2
k(f), and sim-

ilarly ΣF0(f, f0) = σ2
f0(f), ÃK the K × T matrix such that

ÃK(k, t) = ã2
k(t) and similarly ÃF0(f0, t) = ã2

f0(t), then:

σ2
k(t),f0(t)(f) =

h
(ΣKÃK). ∗ (ΣF0ÃF0)

i
f,t

(3)

where .∗ denotes the Hadamard product and for a given matrix M ,
[M ]f,t = M(f, t) . Equation (3) suggests that we define a new
likelihood for V (f, t), which correspond to a one state GMM:

V (f, t) ∼ Nc

“
0, [(ΣKAK). ∗ (ΣF0AF0)]f,t

”
(4)

In fact, the states k and f0 are not explicit anymore in the un-
derlying model of equation (4). However, since the spectra in ΣF0

are given and fixed, we are able to estimate the matrices AK and

1The Gaussian circular distribution of a complex random variable
z ∼ Nc(0, σ2), with z = ρeiθ , is defined such that: p(ρ, θ) =

ρ
πσ2 exp

“
− ρ2

σ2

”
.

AF0 such that they approximate ÃK and ÃF0 . To avoid any ambi-
guity between the coefficients of AK and AF0 , the column vectors
of AK are normalized: a2

k(t) and a2
f0(t) thus contain information

about the presence of the filter k and the pitch f0 in frame t. In addi-
tion, a2

f0(t) also includes the intensity of the singer signal for frame
t. The matrices ΣK , AK and AF0 are estimated from the mixture
signal thanks to the algorithm developed in section 3.

2.2. Background Music Model

We consider the background music signal m(t) as being, for each
analyzed frame, the instantaneous mixture of R sources mr(t). Due
to the linearity of the Fourier transform (FT), M(f, t), the STFT of
m, is also the instantaneous mixture of the R spectra Mr(f, t) of

the sources: M(f, t) =
RP

r=1

ar(t)Mr(f, t). In addition, we assume

that Mr(f, t) ∼ Nc(0, σ2
r(f)). Therefore, our model is equivalent

to the following equation:

M(f, t) ∼ Nc

 
0,

RX
r=1

a2
r(t)σ

2
r(f)

!
(5)

Let ΣR and AR be the matrices such that ΣR(f, r) = σ2
r(f) and

AR(r, t) = a2
r(t), the covariance in (5) is then equal to the matrix

product [ΣRAR]f,t. In [1], the authors propose a NMF approach to
estimate this product. In section 3, we propose to solve this problem
in a Maximum Likelihood (ML) framework.

2.3. Mixture Signal

The signal we wish to analyze is the sum of the singer voice signal
V and the music signal M . Thanks to the Gaussian hypothesis and
from the equations 4 and 5, we can deduce the likelihood for X:

X(f, t) ∼ Nc (0, D(f, t)) (6)

where D = (ΣKAK). ∗ (ΣF0AF0) + ΣRAR. All the matrices
except ΣF0 must be estimated. Depending on the approach, one can
either learn ΣR from non-vocal recordings or estimate them directly
from the mixture. We found that the latter gave better results in our
tests.

3. ESTIMATION OF THE PARAMETERS

In this section, we propose a method to estimate ΣK , AK , AF0 ,
ΣR and AR. Let θ = {ΣK , AK , AF0 , ΣR, AR} be the set of these
parameters. ΣF0 is given as explained in section 2.1.

3.1. Maximum Likelihood Criterion

We consider the ML estimation of the parameters, i.e. finding θ̂ such
that:

pθ̂ (X) = max
θ

pθ (X)

where pθ (X) is the likelihood of the observations X knowing
the parameters θ of the model. By taking the opposite of the
log-likelihood of X knowing the parameters θ, and removing the
elements that do not depend on the parameters to estimate, we obtain
the following cost function we want to minimize:

C(θ) =
X
f,t

log (D(f, t)) +
|X(f, t)|2
D(f, t)

(7)
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3.2. An Iterative Algorithm

The proposed method is inspired by the work of [3]. We followed a
similar process to obtain multiplicative updating rules for the param-
eters of θ, i.e. at iteration n, from a certain set θ(n−1), we compute
θ(n) such that each element of the latter is derived from the element
of the former. More precisely, σ2

k(f)(n) for instance is obtained from

the previously estimated σ2
k(f)(n−1) by an operation of the follow-

ing type: σ2
k(f)(n) = ασ2

k(f)(n−1), where α depends on the partial

derivative of C with respect to the variable σ2
k(f) at the point θ(n−1).

In fact the partial derivatives of C can be expressed under the follow-
ing form, e.g. with respect to σ2

k(f): ∂C
∂σ2

k
(f)

= P+ − P−, where

P+ and P− are positive. In this case, with α =
P−
P+

, the updated

parameter evolves towards the direction of descent for C. We do not
give a formal proof of convergence for the proposed algorithm, but
a general proof for this kind of methods is given in [3].

We also choose this multiplicative gradient method because the
obtained partial derivatives do not allow to analytically separate the
desired parameter from the others. Following this scheme, we ob-
tain the following updating rules for the different parameters of the
parameter set θ, where S = |X|.2, and using Matlab notations:

PF0 = S. ∗ (ΣKAK)./D.2

QF0 = (ΣKAK)./D

AF0 ← AF0 . ∗ (ΣT
F0PF0)./(ΣT

F0QF0)

PK = S. ∗ (ΣF0AF0)./D.2

QK = (ΣF0AF0)./D

AK ← AK . ∗ (ΣT
KPK)./(ΣT

KQK)

ΣK ← ΣK . ∗ (PKAT
K)./(QKAT

K)

AR ← AR. ∗ [ΣT
R(S./D.2)]./[ΣT

R(1./D)]

ΣR ← ΣR. ∗ [(S./D.2)AT
R]./[(1./D)AT

R]

Only one of the five parameter matrices AF0 , AK , AR, ΣK and ΣR

is updated at each iteration in this order. It is an abritrary order and
may not be optimal in all cases.

We noticed that in our simulations, the criterion first decreases
rather fast and stabilizes after about 50 iterations.

3.3. Extracting the Desired Pitch Sequence

In the GMM framework, the fundamental frequency sequence
{F0(t), t ∈ [1, T ]} can be directly obtained by a maximum a pos-
teriori decision rule. However, we do not obtain these probabilities
in our framework . That is why we need to define a post-processing
step in order to extract the desired melody.

If the signal exactly follows the GMM model, then all the el-
ements in AF0 are equal to zero except at most one per frame t:

a2
f̃0

(t), which means that f̃0 = F0(t) . However, we do not ob-

tain such ideal matrices. We could approximate the desired pitch
for frame t by the pitch f̃0 that maximizes a2

f̃0
(t). This choice is

motivated by the fact that the amplitude factors AF0 are sparse and
concentrate around the desired pitches.

We designed an algorithm that smoothens the obtained melody
line. It is comparable to the Viterbi algorithm in that it finds the
pitch sequence that maximizes a given criterion, built as a trade-
off between the amplitude factor a2

f0(t) obtained for a candidate f0,
and the continuity of the pitch sequence. We use the amplitudes
as weights for each pitch: the higher this weight for a given node
(f0, t), the more likely the sequence will go through it. To take

Fig. 1. Synthetic Data: Original spectral envelopes σ
(0)
k (solid lines)

and corresponding envelopes estimated by the proposed algorithm
(dashed lines).
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into account the continuity of a sung melody, we penalize the transi-
tions between the pitches. We define the following function, weight-
ing the transition from pitch f1 to pitch f2 (in Hertz): q(f2|f1) =
exp(−β|n2 − n1|) with β = 10 and where ni = 12(log2(fi) −
log2(440)) + 69 is the MIDI note number corresponding to fi

2 .
Thanks to the use of the MIDI note number, the transition weight for
a half-tone is always the same, independently from the frequency
itself.

For each t ∈ [1, T ], we compute the score S(f0, t) of the best
melody line arriving to each node (f0, t). As in the Viterbi algo-
rithm, we set S(f0, 1) = log(a2

f0(1)) for every f0. For the node
(f0, t), we define the antecedent (fA, t − 1) such that fA maxi-
mizes the function of f : S(f, t − 1) + q(f0|f). We then define
S(f0, t) = S(fA, t − 1) + log(q(f0|fA)) + log(a2

f0(t)). Once we
reach t = T , we find the pitch F0(T )for which S(f, T ) is maxi-
mum. We then track back all the antecedents and form the melody
F0 such that: F0(t) = Antecedent(F0(t + 1)).

4. RESULTS

We first analyze the performance of the proposed algorithm on syn-
thetic data, in order to evaluate how well the algorithm can estimate
the desired parameters, especially the spectral envelopes σk and the
melody line {F0(t), t ∈ [1, T ]}. We also tested the algorithm on
real data from the melody extraction contest of ISMIR 2004 and
compared the results with those of MIREX06’s participants on the
same database.

4.1. Synthetic Data

A synthetic N × T STFT matrix D(0) is generated according to the
equation of D(f, t) given in section 2.3. The sampling rate is as-
sumed to be 11025 Hz, the number of bins for the FT is Nfft = 512,
which corresponds to 46.4 ms temporal windows. We only consider
the low frequency part of the STFT, under fc = 4000 Hz, which
leads to N = 186. We choose K = 4. ΣF0 is given by the source
model KLGLOTT88. For pitches from 100 to 800, regularly spaced

2440 Hz and 69 are the frequency and MIDI note number of the reference
note A4.
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Opera Songs Raw Pitch Acc. Overall Acc.

Proposed Method 81.2% 70.1%
Participant 1 39.0% 35.6%
Participant 2 63.0% 64.1%
Participant 3 42.6% 47.3%
Participant 4 64.2% 61.9%
Participant 5 45.9% 46.5%

Vocal Songs Raw Pitch Acc. Overall Acc.

Proposed Method 82.6% 70.5%
Participant 1 56.9% 48.9%
Participant 2 80.4% 80.6%
Participant 3 70.7% 70.1%
Participant 4 81.3% 78.6%
Participant 5 69.7% 65.0%

Table 1. Melody Extraction Results on ISMIR 2004 Database Vocal
Songs, Comparison with the Results of MIREX 2006 Participants

every eighth tones, Nnotes = 146. We randomly generate the spec-
tral envelopes σ2

k(f)(0). In order to be consistent with real filters,

they are cepstrally smoothed. A
(0)
F0

is such that there is only one
active f0 per frame t, and such that it corresponds to a chirp, i.e.

every element is 0 except on the “diagonal” of the matrix. A
(0)
K is

also such that only one filter is active per frame, and each filter is ac-
tive for several successive frames. Although the algorithm does not
need and does not integrate temporal constraints, this settinghelps
us to analyze the results. We set R = 0 for the moment. All the
parameters to be estimated are randomly initialized.

Figure 1 shows σ
(0)
k (solid lines) against the estimated σk that

are most similar to them. We manually paired them, because the al-
gorithm does not solve the inherent ambiguity on the indexes. The
estimates are not exactly the same as the original. This comes from
the fact that the information needed to retrieve them might be lack-
ing in D(0), because of the chosen “melody”. The spectral combs
σf0 are very sparse in the frequency domain, where the energy es-
sentially concentrates around the harmonics of the fundamental fre-
quency. Therefore, every estimate of σk that rely too much on a
frequency region of low energy is unreliable. Nevertheless, analyz-

ing AK shows that for some simulations, when the σ
(0)
k are similar,

e.g. representing a common “formant”, then the obtained σkcan ap-
proximate the original envelopes by some linear combinations. The
results are still satisfying, because for formant regions, the σk are
generally well estimated.

Another synthetic STFT matrix is generated in order to check
the performance of the pitch tracking step. We estimated the pitch
from a solo vocal track thanks to the YIN algorithm [2] and gener-

ated a STFT matrix with this melody generating A
(0)
F0

. Several noisy
conditions were tested with different values of R and the original
melody line was successfully retrieved, except when the signal to
noise ratio was becoming too low. This test suggested that under
reasonable conditions, the proposed algorithm was able to achieve
the intended task, as tests on real data will confirm.

4.2. Real Data

The algorithm is now tested on the ISMIR 2004 database for audio
melody extraction [7]. We set R = 64. We consider only vocal
songs in the database, i.e. 12 songs with 2 musical styles: opera (4
songs) and pop (8 songs). The sampling rate is 44.1 kHz.

We compare the results to those of the participants of the

MIREX 2006 melody extraction task, which partly used the IS-
MIR 2004 database. The metrics considered are described in [7].
The results are summarized in table 1. The first column gives the
accuracy of the results on frames that were identified as pitched
in the reference files. The second column shows the overall accu-
racy, i.e. also taking into account the unpitched frames. On the 4
opera song files, our method performed very well. The performance
significantly drops when unpitched frames are considered (overall
accuracy). This may be explained by the fact that the presence of
singing voice is not detected and silences in the melody are replaced
by notes of other instruments.

Despite the reduced size of the database, our results are very
promising. Since our approach is entirely unsupervised, it is rea-
sonable to think that similar results could be obtained on larger
databases.

5. CONCLUSION AND FUTURE WORK

We proposed a new method to estimate the pitch of the sung melody
in polyphonic audio recordings. It is inspired by NMF blind source
separation methods to which we added a source/filter model in order
to fit the singer voice track. The results show that the proposed algo-
rithm is at the state of the art, outperforming all methods proposed
for MIREX 2006 in the case of opera style recordings.

We are investigating the potential of this method and how we can
generalize it to signals other than human voice on background mu-
sic. The source/filter model can also fit other instruments, especially
wind instruments. In order to get closer to reality, we could also set
constraints on the spectral envelopes σk such as fitting them to an
auto-regressive moving average (ARMA) model. Another criterion
to be minimized can also be tried, inspired by [6], where the adap-
tation of the basis σr and σk is done thanks to a vocal/non-vocal
pre-processing step. The actual source separation performance of
our algorithm are also to be evaluated against state-of-the-art meth-
ods, and our preliminary tests give promising results for the singer
voice separation.
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