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ABSTRACT

A novel method for monaural speech separation is presented

in this paper. Instead of the traditional Short Time Fourier

Transform (STFT) for time-frequency analysis in speech sep-

aration, the Fan-Chirp Transform (FChT) has been applied

to track the pitch and harmonics of the target speech. This

method has two advantages over STFT. Firstly, the spectrum

spread of dynamic harmonics within each analysis frame has

been alleviated. Secondly, the FChT bases with proper chirp

rate could be chosen according to different frequency mod-

ulation rates in the simultaneous speech. Furthermore, con-

sidering the changeability of frequency modulation rates, a

multi-scale FChT is proposed to adaptively adjust the frame

length of spectrum analysis. Experimental results prove the

validity of the approach in monaural speech separation.

Index Terms— Speech analysis, Harmonic analysis, Fre-

quency modulation, Chirp, Monaural speech separation

1. INTRODUCTION

In real world, sound is usually mixed by several sources. Sep-

arating the speech from other interference sources in monau-

ral recordings is a challenging and meaningful work. Re-

searchers have attacked this difficult problem in various re-

search aspects, such as statistical machine learning [1], speech

representation [2, 3], auditory scene analysis [4, 5], etc. Amon-

g these studies, speech representation attracts much attention.

The sinusoidal model [2, 6] is one of the most important

tools for speech representation in speech separation [3]. It

represents a speech signal as a linear combination of sinu-

soids with time varying amplitudes, frequencies, and phases

for harmonic analysis. In voiced speech, the speech signal is

represented by the sum of a finite number of corresponding

sinusoidal parameters at the fundamental frequency and its

harmonics. Recent implementations of the separation system

with the sinusoidal model generally based on STFT [3]. Al-

though the STFT is suitable for signals with fixed frequency

components in an undertaking frame, for real speech, the pitch

is time-variant, and the STFT may result in the spectrum spre-

ad of the harmonics. This problem is even more serious in

high frequency harmonics, since the frequency modulation

rates of high frequency harmonics are faster than the low ones.

In 2004, L.Weruaga and M.Képesi used the fast chirp trans-

form for speech analysis [7], without the assumption that the

pitch is constant in an analyzed frame. And then in 2006,

FChT is proposed for spectrum analysis and is used to extract

the pitch effectively both in clean and noisy speech [8]. In

FChT, the bases are consisted of a set of comodulated sinu-

soids. When the modulation rate of the chirp basis is matched

to that of the analyzed harmonics, FChT could get finer har-

monic structure, and the spectrum spread of harmonics could

be reduced significantly.

In the paper, we attempt to use FChT in speech separation

for two advantages. Firstly, the spectrum spread of dynamic

harmonics within each analysis frame has been alleviated in

mixture speech. Secondly, the FChT bases with proper chirp

rate could be chosen according to different Frequency Modu-

lation (FM) rates in the simultaneous speech.

Furthermore, considering the changeability of frequency

modulation rates, a multi-scale FChT is proposed to adap-

tively adjust the frame length of spectrum analysis in the pa-

per. For the harmonics of speech with stable FM rates, enlarg-

ing the time scale of spectrum analysis so as to increase the

frequency resolution leads to the efficiency of the separation

of target speech spectrum in FChT analysis. On the contrary,

in case that the FM rate is unstable, a smaller time scale is

probably preferred to track subtle variation.

The rest of this paper is organized as follows. In Section 2

the overview of the proposed separation method is presented,

and then related algorithms are explained in details. Section

3 shows the experimental results. Then the discussions and

conclusions are followed in Section 4.

2. PROPOSED SPEECH SEPARATION METHOD
AND RELATED ALGORITHMS

The proposed method adopts the multi-scale FChT to decom-

pose the mixture speech into Chirp bases for feature extrac-

tion, and tracks the pitches one by one using a dynamic pro-

gramming (DP) algorithm with a comb filter. Then after inte-
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Fig. 1. Overview of the proposed speech separation system based on multi-scale FChT.

gration, the speech is resynthesized. The system overview is

shown as figure 1, and the details are as follows.

2.1. FChT for mixture speech analysis

In the mixture speech, there are two important cues for speech

separation. One is the pitch values of the different speakers in

each analysis frame; the other is the FM rates of the simulta-

neous pitches. In the paper, we use FChT for mixture speech

analysis to obtain these cues. The system decomposes the

mixture speech into frames and the spectrum of chirp trans-

form is obtained by FChT [7, 8], which is composed of an

adaptive analysis basis of quadratic chirps, and could be im-

plemented by time warping and FFT, shown in figure 1.

2.2. Multi-scale FChT and feature extraction

In the paper, multi-length analysized frames are adapted to

various requirements of the time frequency resolution of mix-

ture speech representation. The system decomposes the mix-

ture speech into multi-length frames by the window functions

denoted as W1(n), W2(n) and W3(n) in figure 1 in which the

three levels (l = 1,2,3) of the frame lengths Nl contains 512,

768 and 1024 samples per frame for the lth level. Then the

spectrum of chirp transform is obtained by multi-scale FChT.

The time warping process is shown as follow equations,

x(n)
ϕα,l(.)−−−−−−−−→ yα,l(n) = x(fsϕα,l(n/fs)) (1)

φα,l(n) = (1 + ωα(n − Nl))n (2)

φα,l(ϕα,l(n)) = n (3)

where x(n) is an Nl samples length frame of mixture speech

signal sampled at a Nyquist rate fs , φα,l(n) is the warping

function with chirp rate ωα with warping rate index α (α =
0, 1, . . . A), and ϕα,l is the inverse function of φα,l . Here l
denotes the level index. The warped signal yα,l(n) on each

level l is then followed by a Nmax point FFT as equation (4)

Xl(α, k) = FFTNmax{yα,l(n)} (4)

where Nmax = 8192 by adding zeros at the end of yα,l(n). k
is the frequency index, k = 0, 1, . . . Nmax − 1.

In one frame, the bases of FChT with the proper chirp rate,

which match the FM rate of the pitch of the dominate speech,

always make the spectra tighter than the other chirp rate bases

when the dominate harmonics’ energy is high enough. To

save the computational cost, we select the chirp rates with

the first M largest values of the normalized spectral square

sum as the candidates, and in this paper, we select the first

two (M = 2). This process is denoted as Pre-rate-selection

module in figure 1 and is calculated by

Sl(α) =

Nmax/2∑

k=0

|Xl(α, k)|2/Xl (5)

Xl =

A∑

α=0

Nmax/2∑

k=0

|Xl(α, k)|2/Nl (6)

where Sl(α) is the normalized spectral square sum. Xl is the

sum of all rates on each level, and is normalized by the frame

length Nl. It is used to normalize the feature value Sl(α) of

various chirp rates and frame length levels in equation (5).

Then the logarithmic energy chirp spectra SLogl(α, k)
with the selected candidate with chirp rate index α on level

l is given as equation (7).

SLogl(α, k) = log10(|Xl(α, k)|2) (7)

The gathered spectra of the pitch candidate, which is used

as the feature for pitch tracking, shown in figure 1 as the Spec-

tral gathering module, is calculated with equation (8) in [8]

ρl(α, p) =
1

H

H∑

h=1

SLogl(α, hp) (8)

where H is the number of harmonics within the Nyquist band-

width by assuming the candidate fundamental frequency in-

dex to be p, and h is the harmonic index. The values of the

gathered spectra ρ{Ω} = ρl(α, p) are the features with the
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parameters Ω = {α, p, l} of each level l , selected candidate

chirp rate index α, and candidate pitch p. For the ith frame,

the parameters are denoted as Ωi = {αi, pi, li}. To solve the

double pitch errors, a weighted term k(p) is used, which is

decreased with the frequency p, and to solve the half pitch

errors, delta value is used as the cost as equation (9)

c(Ω) = k(p) · (ρl(α, p) − ρl(α, p/2)) (9)

2.3. Pitch tracking

After calculated the cost value, the system tracks the pitch in

all levels by a DP algorithm. The process shown in figure 1

as Tracking module, is also illustrated in figure 2. The chirp

rate ωαi of the ith frame is given by

ωαi =
(pi − pi−1)fs

pi + pi+1
(10)

where pi−1 , pi and pi+1 are the candidate pitches of frame

i − 1 , i and i + 1 . The pitch candidates vary from 60 Hz to

400 Hz with equally spaced step in logarithmic domain.

The score si(Ωi) of the ith frame for each path of candi-

date pitch pi, and FM rate index αi obtained by equation (10)

on level li is shown as equation (11) and (12)

si(Ωi) = si−1(Ω
∗
i−1) + c(Ωi) (11)

Ω∗
i−1 = arg max

Ωi−1
(si−1(Ωi−1) + c(Ωi)). (12)

Then for each frame, the system selects the optimal Ω∗

in the whole parameter space with the parameter Ω of pitch

value and chip rate in all three levels for the largest score of

the path. Then the system could get the optimal Ω∗ sequence

for all the frames of the utterance.

After tracking one continuous pitch contour in a segment,

the system filters the harmonics belonging to the group of this

estimated pitch contour using comb-filtering, and then tracks

the continuous pitch contour of another source by the same

method.

Freq.
Time

Scale

FM
rate

Optimal path

Fig. 2. Illustration of multi-scale FChT based pitch tracking.

2.4. Integration

For the segments which have no overlap in the time domain,

the DP algorithm cannot get a solution for speech integra-

tion. Then the segments are integrated by the mean values of

the pitch values obtained forward using a k-means algorithm,

and the non-overlap segments are clustered into two source

groups. However, this method is not suitable for the case of

pitch ranges of the simultaneous talkers has much overlap.

2.5. Resynthesis

In this paper, the separated speech is resynthesized by FChT

based sinusoidal model. The speech is composed by the con-

nection of the frames with frame length N and no overlap.

The ith frame signal si(n) , n = 1, . . . N is shown as

si(n) =

H∑

h=0

ci(h, n) cos(θi(h, n)) (13)

ci(h, n) = ci−1(h, N) + nfs(ci(h, N) − ci−1(h, N))/N (14)

θi(h, n) = θi−1(h, N) + 2πnpi−1(1 + nωαi) (15)

where ci(h, n) and θi(h, n) are the amplitude and phase of the

hth harmonic respectively at sample n of ith frame, which

are calculated as equation (14) and (15). The initial ampli-

tude ci−1(h, N), final amplitudes ci(h, N), and the warping

rate ωαi
of the current ith frame could be obtained according

to the optimal Ω∗ sequence and the FChT spectra. Both the

phase and frequency of the harmonics are continuous over the

conjoint frames in the model.

3. EXPERIMENTS AND RESULTS

In the experiments, a female utterance (n7) and a male utter-

ance (n8) from the database of Cooke 100 utterances [9] are

selected as test data, which are mixed by signal-to-noise ra-

tios (SNRs) ranging from -6 dB to 6 dB in 2 dB increments.

Both utterances in the mixtures were separated as the target

speech, and the mixture SNR is defined as n7 to n8 ratio in the

experiments. The mixture speech signals are separated by the

method described above, and the source-to-interferences ratio

(SIR) is employed to evaluate the efficiency of separation. It

performs the measure described in [10] , which decomposes

a given estimate ŝ(n) of a source s(n) as a sum shown as

ŝ(n) = sclean(n) + einterf (n) + eartif (n) (16)

where sclean(n) is the component of clean speech, einterf (n)
is the component of interference, and eartif (n) is the artificial

component. In [10], SIR is given by

SIR = 10log10
‖ sclean ‖2

‖ einterf ‖2 . (17)

In figure 3 (a-e), the spectrum from a frame of 0dB mix-

ture speech is shown, and it contrasts the spectra from the
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Fig. 3. The spectra of mixture speech (a), original n7 (b),
original n8 (c), separated n7 (d) and separated n8 (e) by the
proposed system.

separated n7 and n8 with those from the original utterances.

In the gross, the separated spectra are similar to the original

ones, especially in the low frequency. In some high frequency

bands (denoted by circles), envelops of the separated spectra

are interfered by the other speech source where the local SNR

is lower.

The mean SIRs of the two separated sources by the STFT

based and FChT based methods are shown in table 1, includ-

ing 512 frame length STFT, 512, 768, 1024 frame length and

multi-scale FChT. The frame shifts in each case are half of

the frame lengths. The results of FChT based are better than

the STFT based with the same frame length (512) by 0.98dB

Table 1. Mean SIR (dB) results of the systems based on STFT
with 512 samples per frame and FChT with variable frame
lengths (512, 768, 1024 samples per frame and multi-scale).

STFT FChT

SNR 512 512 768 1024 multi-scale

-6dB 12.41 12.60 15.52 14.86 17.06

-4dB 12.00 13.34 14.40 15.07 17.09

-2dB 11.42 11.42 15.45 15.11 17.33

0dB 11.47 13.35 12.70 15.44 14.57

2dB 10.95 14.19 12.62 15.34 16.12

4dB 9.69 9.49 12.84 13.50 14.00

6dB 7.52 7.92 12.69 13.72 15.48

Average 10.78 11.76 13.75 14.72 15.95

increments averagely. Among the FChT based results, the

mean SIR results of 1024 samples frame length is better than

the other two frame lengths in the experiments, and compared

with that result, the SIR of multi-scale increases 1.23dB aver-

agely.

4. DISCUSSIONS AND CONCLUSIONS

In this paper, a multi-scale FChT is adopted for time fre-

quency representation of mixture speech. This method is suit-

able to analyze the speech with fast variation and the mixture

speech with multiple FM rates of the simultaneous pitches.

Experimental results prove the validity of the approach in

monaural speech separation. In this paper, the unvoiced speech

is not considered, the computational cost is rather high, and

the sequential grouping strategy should be improved. There-

fore all above are our future works.
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