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ABSTRACT

This paper describes a method to adaptively control a step-size pa-
rameter which is used for updating a separation matrix to extract a
target sound source accurately in blind source separation (BSS). The
design of the step-size parameter is essential when we apply BSS to
real-world applications such as robot audition systems, because the
surrounding environment dynamically changes in the real world. It
is common to use a fixed step-size parameter that is obtained em-
pirically. However, due to environmental changes and noises, the
performance of BSS with the fixed step-size parameter deteriorates
and the separation matrix sometimes diverges. We propose a gen-
eral method that allows adaptive step-size control. The proposed
method is an extension of Newton’s method utilizing a complex gra-
dient theory and is applicable to any BSS algorithm. Actually, we
applied it to six types of BSS algorithms for an 8 ch microphone
array embedded in Honda ASIMO. Experimental results show that
the proposed method improves the performance of these six BSS al-
gorithms through experiments of separation and recognition for two
simultaneous speeches.

Index Terms— robot audition, blind source separation, adaptive
step-size, Newton’s method

1. INTRODUCTION

For natural human-robot interaction, a robot should have auditory
functions [1]. In the real-world environment where the robot is ex-
pected to work properly, the robot should cope with dynamically-
changing noise sources including its own motor noises and speech
interference like barge-in. Sound Source Separation (SSS) is, thus,
essential for the robot. Blind Source Separation (BSS) is often used
as an SSS algorithm [2, 3], because it shows high performance with-
out using any transfer function between a microphone and a sound
source. However, most BSS algorithms have difficulties in sepa-
ration speed and accuracy in a dynamically-changing environment,
because they use a fixed step-size parameter which is manually tuned
to a specific stationary environment. Therefore, we propose a gen-
eral framework to allow an adaptive step-size parameter based on
Newton’s method to improve BSS performance in the real world.

2. ADAPTIVE STEP-SIZE PARAMETER CONTROL

2.1. General BSS Formulation

Fig. 1 shows the general system model for SSS. Suppose that there
are M sources and N ( ≤ M) microphones. A spectrum vector of M
sources at frequency ω, s(ω), is denoted as [s1(ω)s2(ω)...sM (ω)]T ,
and a spectrum vector of signals captured by the N microphones at
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Fig. 1. System Model for Blind Source Separation

frequency ω, x(ω), is denoted as [x1(ω)x2(ω)...xN (ω)]T . x(ω) is,
then, calculated as

x(ω) = H(ω)s(ω), (1)
whereH(ω) is a transfer function (TF) matrix. Each componentHji

of the TF matrix represents the TF from the i-th source to the j-th
microphone. SSS is then formulated as

y(ω) = W(ω)x(ω), (2)

whereW(ω) is called a separation matrix. SSS is defined as a prob-
lem to find W(ω) which satisfies the condition that output signal
y(ω) is the same as s(ω). If H(ω) is obtained precisely, W(ω) is
easily estimated by calculating the pseudo inverse H+(ω). How-
ever, it is difficult to obtainH(ω) precisely.

BSS solves this problem because it is able to separate sound
sources even whenH(ω) is unknown or only a part ofH(ω) such as
direct sound components is given. BSS is formulated by obtaining an
optimal separation matrixWopt without using any prior information
such as H(ω). Wopt is estimated by minimizing a cost function
J(y) which denotes the mixture degree of y.

Wopt = argmin
W

[J(y)] = argmin
W

[J(Wx)]. (3)

To obtainWopt, BSS updatesW to minimize J(y) by using

Wt+1 = Wt − μJ′(Wt). (4)

whereWt denotesW at the current time step t, J′(W) is defined as
the update direction ofW, and μmeans a step-size parameter. Most
BSS algorithms use a fixed frequency-independent value as the step-
size parameter. However, the fixed step-size has several problems as
mentioned in Sec. 1.

2.2. General Formulation of Adaptive Step-Size Parameter Con-
trol for BSS

This section describes the formulation of an adaptive step-size pa-
rameter control method which is generally applicable to BSS. The
use of an adaptive step-size parameter is well-studied in the field
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of echo cancellation [4]. However, most adaptive step-size methods
for echo cancellation like normalized LMS assume a single chan-
nel input and signal processing only with real numbers. To apply
such an adaptive step-size method to BSS, we extended it to support
multi-channel input and complex number signals. To realize this,
we introduced the multi-dimensional Newton’s method and linear
approximation formula for a complex gradient matrix. According to
the complex gradient theory [5], J(W) around J(Wt) is approxi-
mated as

J(W) ≈ J(Wt) + 2MA(∇w∗J(W),W − Wt), (5)

where MA(A,B) = Re[
P

i,j a∗
i,jbi,j ], which represents the real-

part sum of all products of the matrices A∗ and B, and ∇w∗ is the
complex gradient operator [5]. μ becomes the optimal value μopt

when J(W) = 0. Thus, from Eqs. (4) and (5), μopt is defined as

μopt =
J(Wt)

2MA(∇w∗J(Wt),J′(Wt))
(6)

Eq. (6) shows the general formulation of the adaptive method. It
is easily applicable to any kind of BSS by replacing J(W) with
that for the target BSS algorithm. If J′(W) = ∇w∗J(W), μopt is
simplified as

μopt =
J(Wt)

2‖J′(Wt)‖2
, (7)

where ‖ · ‖2 means the Frobenius norm.
Using our adaptive method, the step-size becomes large when a

separation error is high, for example, due to source position changes.
It will be low when the error is small due to the convergence of the
separation matrix.

3. APPLICATION TO BSS ALGORITHMS

We applied our proposed adaptive step-size parameter control to six
types of BSS algorithms, Decorrelation based Source Separation
(DSS), Independent Component Analysis (ICA),Geometric-constrained
Source Separation (GSS),Geometric-constrained ICA (GICA),High-
order DSS (HDSS), andGeometric-constrained HDSS (GHDSS). The
basic formulation of these BSS algorithms is defined in Eqs. (2)
– (4). The differences between them are the definitions of J(W)
and J′(W). Therefore, μopt defined in Eq. (7) changes when our
adaptive step-size parameter control method is applied. The six BSS
algorithms with adaptive step-size parameters are described in the
following sections.

3.1. Decorrelation-based Source Separation (DSS)

The cost function of DSS is defined by

JDSS(W) = ‖E[E]‖2 (8)
E = yyH − diag[yyH ],

where E[·] represents an expectation operator. The update direction
J′(W) is calculated by

J′
DSS(W) = 2EWxxH (9)

which is obtained by taking ∇w∗J(W) and removing E[·]. The
optimal step-size is

μoptDSS =
‖E‖2

2‖2EWtxxH‖2
(10)

3.2. Independent Component Analysis (ICA)

We selected a conventional ICA algorithm based on Kullback-Liebler
divergence [2] and natural gradient method [6] for applying our pro-
posed method. In this ICA, J(W) and J′(W) are given by

JICA(W) =

Z
p(y) log

p(y)

q(y)
dy, (11)

J′
ICA(W) = EφW, (12)

Eφ = φ(y)yH − diag[φ(y)yH ],

where p(y) is the joint Probability Density Function (PDF) of y.q(y)
is the product of the marginal PDF, i.e.,

Q
k p(yk). φ(y) means a

nonlinear function defined as

φ(y) = [φ(y1), φ(y2), · · · , φ(yN )]T (13)

φ(yi) = − ∂

∂yi
log p(yi).

There are a variety of definitions for φ(yi). In this paper, we selected
a hyperbolic-tangent-based function [7] defined by

φ(yi) = tanh(η|yi|)ej·θ(yi), (14)

where η means the scaling parameter.
Since it is almost impossible to calculate JICA, we used ‖Eφ‖2

instead of the JICA. The optimal step-size is defined by

μoptICA =
‖Eφ‖2

2MA(EφWt, 2Eφ̃(y)xH)
(15)

φ̃(y) = [φ̃(y1), φ̃(y2), ..., φ̃(yN )]T

φ̃(yi) = φ(yi) + yi
∂φ(yi)

∂yi
.

3.3. Geometric-constrained Source Separation (GSS)

GSS relaxes limitations in ICA such as permutation and scaling prob-
lems by introducing “geometric constraints” obtained from the loca-
tions of microphones and sound sources. Therefore, it is suitable for
real-world applications such as robot audition systems [8]. J(W)
for GSS consists of two cost functions – JDSS(W) in Eq. (8) and
JGC(W) which corresponds to geometric constraints.

JGSS(W) = JDSS(W) + λJGC(W) (16)

where λ means a weight factor.
When a cost function based on delay-and-sum beamforming (C1

in [9]) is selected as JGC(W), it is denoted as

JGC(W) = ‖EGC‖2 (17)
EGC = diag[WD − I]

where D means a transfer function matrix based on a direct sound
path between a sound source and each microphone. J′(W) is given
by

J′
GSS(W) = J′

DSS(W) + λJ′
GC(W) (18)

J′
GC(W) = EGCDH .

The update equation of the separation matrix for GSS is defined by

Wt+1 = Wt − μDSSJ′
DSS(Wt) − μGCJ′

GC(Wt). (19)
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Fig. 2. ASIMO with 8 microphones

In the case where a fixed step-size parameter is used, μGC is defined
by

μGC = λ · μDSS . (20)

In our adaptive step-size method, both μDSS and μGC are opti-
mized. The optimal step-size for μDSS is defined as Eq. (10), and
that for μGC is calculated as

μoptGC =
‖EGC‖2

2‖2EGCDH‖2
(21)

3.4. Geometric-constrained ICA (GICA)

GICA is an ICA algorithm with geometric constraints. Thus, it is
formulated by replacing JDSS(W) with JICA(W) in Eq. (16).

JGICA(W) = JICA(W) + λJGC(W) (22)

Therefore, the optimal step-size parameters for GICA are obtained
from Eqs. (15) and (21). Although GICA was also reported in [10],
it requires accurate geometric information to achieve good perfor-
mance. Since our GICA formulation allows constraint errors to some
extent, it is more suitable for real-world applications.

3.5. High-order DSS (HDSS)

J(W) and J′(W) for HDSS are defined by

JHDSS(W) = ‖E[Eφ]‖2 (23)
J′

HDSS(W) = 2Eφφ̃(y)xH (24)

Thus, the optimal step-size for HDSS is defined by

μoptHDSS =
‖Eφ‖2

2‖2Eφφ̃(y)xH‖2
. (25)

3.6. Geometric-constrained High-order DSS (GHDSS)

GHDSS is a Geometric-constrained version of HDSS. Therefore, its
cost function, JGHDSS(W) is defined by

JGHDSS(W) = JHDSS(W) + λJGC(W). (26)

The optimal step-size parameters for GHDSS are obtained from Eqs.
(25) and (21).

4. EVALUATION

We evaluated the adaptive step-size control method through the per-
formance of the above six BSS algorithms with/without adaptive
step-size control.

We used an 8 ch microphone array embedded in Honda ASIMO
shown in Fig. 2. The positions of the microphones are bilaterally
symmetric. First, by using this microphone array, we measured
background noise including ASIMO’s own motor noises and im-
pulse responses using a loudspeaker (GENELEC 1029A) in a room.
The size of the room was 4.0m × 7.0m × 3.0m, and the reverber-
ation time (RT20) was 0.3–0.4 s. The input data was, then, synthe-
sized as a mixture of two Japanese-speech sources originating from
the front direction (S1) and 90◦ to the right (S2) of ASIMO by using
the measured impulse responses and background noise.

Both sources are assumed to be 1.5m away from the robot and
to have the same power. The background noise level was 10-20 dB
lower than each speech source. The setting of the six BSS algorithms
is described in Table 1. For BSS with a fixed step-size parameter,
three kinds of μ values, i.e., 0.1, 0.01, 0.001, were used. The weight
factors λ in Eqs. (16), (22) and (26) are set to ‖yyH‖−2 accord-
ing to [8]. Besides the six algorithms, we also evaluated two other
conditions to know the baseline performance. One case was with
one microphone input selected, and another case was with a sim-
ple delay-and-sum beamformer applied. Basically, BSS algorithms
in the frequency domain have two problems – scaling and permu-
tation. In this work, the permutation problems are solved by main-
taining ‖W‖ = 1 at every time frame [11]. The scaling problems
are avoided by reordering row vectors in W according to geomet-
ric information on sound source directions estimated at the first time
frame. Three metrics - signal-to-noise ratio (SNR), mean of corre-
lation coefficient (CC) and word correct rate (WCR) by using au-
tomatic speech recognition (ASR) - were used for evaluation. SNR
and CC were measured for 10 s speech input in all algorithms, and
WCR was measured only for speech separated by GSS, because it
has the best performance in SNR when our proposed method was
applied.

SNR is defined by

SNR = 10 log10

"
1

T

TX
t=1

|y|2
|n̂|2

#
, (27)

where y means a separated signal (output) and n̂ is the noise signal
included in y. The n is calculated by using n̂ = y − ŝ, where ŝ rep-
resents a separated signal for the signal generated by the convolution
of Si and the measured impulse response.

CC is defined in time-frequency domain as

CC [dB] = 10 log10 Eω[CCω(ω)], (28)

CCω(ω) =
|Et[|y∗

1(ω, t)y2(ω, t)|]p
Et[|y1(ω, t)|2] · p

Et[|y2(ω, t)|2]
where Eω[·] and Et[·] mean the average powers in frequency and
time respectively. yi(ω, t) means the i-th output signal at time t and
frequency ω. Because CC represents the correlation between the two
sound sources, it is expected to be −∞ dB when the two speeches
are separated completely.

To measure WCR, we used Japanese automatic speech recog-
nizer, Julian[12], which supports network grammar as a language
model. Isolated word recognition for an ATR phonetically-balanced
Japanese word dataset which includes 216 words per speaker was
performed using a clean acoustic model.
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Table 1. BSS Setting
sampling frequency 16 kHz
window function Hanning
window length 512 (32ms)
shift length 256 (16ms)

scaling parameter η 1

4.1. Results

Figs. 3 – 5 show SNR, CC and WCR of the separated speech, re-
spectively.

In Fig. 3, our proposed method (AS) shows optimal SNR im-
provement in four BSS algorithms – GSS, DSS, HDSS, and GHDSS.
This means that adaptive step-size control is effective to improve
BSS. However, in the ICA and GICA algorithms, the performance
of the proposed method was lower than we expected. We found that
noises at low frequency were emphasized in the separated speech in
ICA and GICA. This decreased SNR, but sound source separation
worked well at the frequency bands which include speech signals.

In Fig. 4, AS shows the best performance in all BSS algorithms.
This means that our proposed method is also effective in ICA and
GICA in terms of decorrelation, that is, separation.

For WCR, AS shows the best performance in Fig. 5. Sound
source separation is often used to improve ASR performance as pre-
processing. Thus, this means that AS is effective for real-world ap-
plications using ASR such as robot audition systems.

5. CONCLUSION

We proposed an adaptive step-size control method to improve sound
source separation in the real-world environment. It is an extension
of Newton’s method and is applicable to any kind of blind source
separation algorithm. We implemented six types of BSS algorithms
with adaptive step-size control. Through the experiments of sound
source separation for two simultaneous speeches, we proved the ef-
fectiveness and the general applicability of the proposed method.
Because the evaluation was performed in a simulated environment
using speech data synthesized by using measured impulse responses,
evaluation in dynamically-changeable acoustic environments remains
as future research. Construction of a real-time robot audition system
by introducing our proposed method is another future challenge.
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