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ABSTRACT

This paper presents a novel adaptive approach to the separa-

tion of convolutedly mixed acoustic signals based on inde-

pendent vector analysis (IVA). IVA, as an extension of inde-

pendent component analysis (ICA) from univariate compo-

nents to multivariate components, provides an efficient frame-

work for avoiding the well-known permutation problem in

frequency-domain blind source separation (BSS). However,

since IVA has been mostly employing pre-specified and sim-

ple source priors which are good fits to speech signals, the

performance degrades when the mixture includes unknown

sources other than speech. Also, sensor noise has not been

considered. To tackle these limitations, we employ multivari-

ate Gaussian mixture model (GMM) as the source priors and

add sensor noise into the model. We derive an expectation

maximization (EM) algorithm that estimates the separating

matrices and the parameters of the unknown source prior to-

gether. The performance is demonstrated by experimental re-

sults that include the comparison with the IVA results using

fixed source priors.

Index Terms— Array signal processing, frequency do-

main analysis, maximum likelihood estimation, higher order

statistics, speech enhancement

1. INTRODUCTION

Independent component analysis is a well-known algorithmic

method that can solve the blind source separation (BSS) prob-

lem efficiently. The underlying assumption of ICA is that the

observations are linear mixtures of hidden sources which are

statistically independent and thus the sources can be separated

by maximizing the independence of the outputs. Various ICA

algorithms have been proposed based on the source models or

the characterization of independence (See [1]).

Separation of convoluted mixtures have been tackled in

the frequency (or time-frequency) domain, where the mixing

process is bin-wise and (approximately) instantaneous such
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that rather simple ICA algorithms can be applied to it. How-

ever, since ICA is blind to permutation, the bin-wise separa-

tion results in permutation disorder across the bins and thus

prevents correct signal reconstruction. This is called the per-

mutation problem and has been fixed by computing the direc-

tion of arrival of the frequency components [2] or the cross-

correlation of their magnitudes [3], or by smoothing the filter

[4].

On the other hand, a multivariate extension of ICA called

independent vector analysis (IVA) exploits the dependency

among the frequency components such that the permutation

problem can be avoided [5, 6]. As it is the case in frequency-

domain BSS, the mixture model of IVA consists of multi-

ple layers of linear ICA mixtures where the source compo-

nents have dependency across the layers to form a multivari-

ate source, or vector, and the vectors are independent of each

other (Fig. 1). Hence, in IVA, the separation and the permuta-

tion matching are achieved by maximizing the independence

among groups of dependent sources.
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Fig. 1. The mixture model of independent vector analysis

(IVA) consists of multiple layers of instantaneous ICA mix-

tures where dependent sources can be aligned across the lay-

ers to form multivariate sources, or vectors, and the vectors

are independent of each other.

Most IVA algorithms have been derived for the separation

of speech signals in the maximum likelihood (ML) frame-

work. The source priors were pre-specified by products of

simple multidimensional super-Gaussian densities and only
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the separating matrices were estimated. Generally, however,

it is difficult to model the collective frequency components of

various sources and the true source models are mostly highly

complicated and unknown. Hence, it can be easily expected

that flexible and more accurate source priors will lead to bet-

ter separation performance.

In this paper, we propose a novel adaptive IVA algorithm

to separate the mixture of convolutedly mixed signals in the

presence of sensor noise. Motivated by independent factor

analysis (IFA) [7], we model the joint probability density func-

tion (PDF) of the collective frequency components by multi-

dimensional Gaussian mixture model (GMM) and allow sen-

sor noise which has not been considered in the previous ML

approaches of IVA. An efficient EM algorithm is derived to

estimate the mixing matrices and the parameters of an un-

known source prior together. Signal estimation is achieved

through Bayesian inference by computing the minimum mean

squared error (MMSE) of the signal posterior distribution.

2. ADAPTIVE INDEPENDENT VECTOR ANALYSIS
MODEL

In this section, we define the acoustic model for convoluted

mixing in both time domain and frequency domain and intro-

duce the multivariate GMM which will serve as the source

priors.

2.1. Acoustic Model for Convoluted Mixing

The acoustic model for convoluted mixing can be described

as,

Yi[m] =
∑

j

∑
k

hij [k]Xj [m − k] + ni[m], (1)

where hij is the time-domain transfer function from the jth

source to the ith observation, Xj [m] is the jth source sig-

nal at time m, ni[m] is noise. Here in this paper, we will

only consider the situation of 2 sources and 2 microphones.

A generalization to multiple sources is straightforward.

The separation of convoluted mixtures can be tackled more

conveniently when (approximately) converted into a linear

mixing model in the frequency domain by short time Fourier

transform (STFT). In the frequency domain (a.k.a. the time-

frequency domain) we have

yf
t = Afxf

t + nf
t , (2)

where yf
t = [yf

1t, y
f
2t]

T, xf
t = [xf

1t, x
f
2t]

T and nf
t = [nf

1t, n
f
2t]

T

(·T denotes transpose) are the STFT coefficients of observa-

tions, sources, and noises, respectively. Af is the mixing ma-

trix in each frequency bin that corresponds to the hij [k] and i,
f , and t are the indices of the source, the frequency bin, and

the frame, respectively.

2.2. Multivariate Density Models of each Signal

In contrast with those IVA algorithms where the source sig-

nals were modeled by identical multivariate densities, we em-

ploy the flexible multivariate GMM as the source prior:

p(xit) =
∑
sit

p(sit)p(xit|sit) (3)

=
∑
sit

p(sit)
∏
f

N (xf
it|0, νf

sit
). (4)

where xit is [x1
it, x

2
it, · · ·]T and sit denotes the state of the

mixture model. Here, N (xf
it|0, νf

sit
) is the Gaussian density

for complex variables with precision νf
sit

(inverse of covari-

ance), i.e.

N (xf
it|0, νf

sit
) =

νf
sit

π
e−νf

sit
|xf

it
|2 . (5)

Although we assume diagonal precision matrix for each (con-

ditional) multivariate Gaussian density p(xit|sit), their mix-

ture p(xit) imposes dependency on the components, which is

essential to prevent the permutation problem in IVA. In addi-

tion, of course, we assume independence among multivariate

sources. We also assume Gaussian noise,

p(nf
it) = N (nf

it|0, λf ) =
λf

π
e−λf |nf

it
|2 . (6)

In the limit where λf goes to infinity, the acoustic model in

(2) reduces to noiseless model.

Although the parameters of both source priors p(x1t) and

p(x2t) can be learned blindly, in this paper we deal with the

case when one source type, e.g. speech, is known such that

p(x1t) can be trained a priori by the same type of sources

and be fixed. Please note that there are many cases when

the type of the signal to be cleaned is specified in advance,

e.g. speech enhancement, and thus by using its pre-trained

source prior the number of data required for proper learning

can be reduced significantly. The parameters of the source

prior p(x2t), as well as the mixing matrices {Af}, are esti-

mated from the data.

3. EM ALGORITHM FOR PARAMETER
ESTIMATION

The unknown parameters θ = {Af , p(s2t), νf
s2t

, λf} can be

estimated via EM algorithm.

E-step: The posteriors of the source signal can be ob-

tained by

log q(xf
1t, x

f
2t|s1t, s2t)

∝ log p(yf
1t, y

f
2t|xf

1t, x
f
2t)

+ log p(xf
1t|sf

1t) + log p(xf
2t|s2t) + c. (7)
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Because of the GMM source prior, the right hand side of the

above equation is quadratic in xf
1t and xf

2t. Thus the signal

posterior conditioned on the states s1 and s2 is Gaussian:

q(xf
1t, x

f
2t|s1t, s2t) = N (xf

1t, x
f
2t|μf

s1ts2t
, Φf

s1ts2t
), (8)

whose precision and mean are, respectively,

Φf
s1ts2t

= λf (Af )TAf +
(

νf
s1t

0
0 νf

s2t

)
(9)

and

μf
s1ts2t

= λf (Φf
s1ts2t

)−1(Af )Tyf
t . (10)

To compute the posterior state probability, we need to

evaluate p(yf
1t, y

f
2t|s1t, s2t), which is Gaussian with zero mean

and precision matrix Σf
s1ts2t

given by

(Σf
s1ts2t

)−1 = Af

( 1

νf
s1t

0

0 1

νf
s2t

)
(Af )T

+
(

1
λf 0
0 1

λf

)
. (11)

Let’s define fs1ts2t
(t) as the following:

fs1ts2t
(t)

= log p(y1t,y2t|s1t, s2t) + log p(s1t) + log p(s2t) (12)

=
∑

f

log p(yf
1t, y

f
2t|s1t, s2t) + log p(s1t) + log p(s2t),(13)

where yit = [y1
it, y

2
it, · · ·]T. Then, since

log q(s1t, s2t|y1t,y2t) ∝ fs1ts2t
(t), (14)

the posterior state probability can be computed as

q(s1t, s2t|y1t,y2t) =
1
Zt

efs1ts2t
(t), (15)

where

Zt =
∑

s1t,s2t

efs1ts2t
(t). (16)

M-step: The update rules for mixing matrices {Af} are

Af

=
( ∑

t

< yf
t (xf

t )T >q

)( ∑
t

< xf
t (xf

t )T >q

)−1

,(17)

where < · >q denotes expectation over q.

The update rules for the precisions of the source prior are

1

νf
s2t

=
∑

t,s1t
q(s1t,s2t|y1t,y2t)((Φ

f
s1ts2t

)−1)(2,2)∑
t,s1t

q(s1t,s2t|y1t,y2t)

+
∑

t,s1t
q(s1t,s2t|y1t,y2t)‖μf

s1ts2t
‖2∑

t,s1t
q(s1t,s2t|y1t,y2t)

. (18)

where (M)(2,2) denotes the (2, 2)-th element of the matrix M.

The state probability of source prior is computed as

p(s2t) =
∑

t,s1t
q(s1t,s2t|y1t,y2t)∑

t,s1t,s2t
q(s1t,s2t|y1t,y2t)

= 1
N

∑
t q(s2t|y1t,y2t). (19)

The update rules for noise precisions λf are given by

2N

λf
=

∑
t

yf
t (yf

t )T − Tr(Af < xf
t (yf

t )T >q) (20)

−Tr
(
(Af )T < yf

t (xf
t )T >q

)
+Tr

(
(Af )TAf < xf

t (xf
t )T >q

)
. (21)

where Tr(·) stands for the trace operation.

Signal Estimation and Scaling For noiseless ICA, orig-

inal sources can be estimated by applying the inverse of the

mixing matrices, {(Af )−1}, to mixed observation. However,

this approach is not optimal if sensor noise is considered. We

use MMSE estimator by computing the mean of posterior dis-

tribution q(xf
t |yf

t ),

x̄f
t =< xf

t >q=
∑

s1t,s2t

q(s1t, s2t|y1t,y2t)μf
s1ts2t

. (22)

where μf
s1ts2t

is given in (10).

Since ICA including IVA also suffer from scaling indeter-

minacy, for proper signal reconstruction the well-known min-

imal distortion principle [8] is applied to Af at the end of the

learning as

Af ← Af
(
diag(Af )

)−1
. (23)

4. EXPERIMENT

We applied the algorithm to the mixture of speech and mu-

sic, under noisy condition. 8-second-long clean male speech

and a piece of music sampled at 8 kHz were convolved with

room impulse responses generated by an image method [9]

and were mixed together. The mixed signals were then cor-

rupted with white Gaussian noise at the signal to noise ratio

(SNR) of 10 dB. In this experiment, we used Hanning window

of length 512 samples and shift size of length 128 samples to

analyze the signal. A 512-point fast Fourier transform (FFT)

was used to obtain frequency domain coefficients. Source one

(speech) is modeled by GMM with 10 components trained

with standard EM algorithm. The FFT coefficients for each

frequency bin are preprocessed by whitening matrices,

Qf = (< yf (yf )T >)−1/2. (24)

We initialized Ak’s to be identity matrices and ran the EM al-

gorithm for 400 iterations. The time domain signal is recon-

structed by overlap-adding after applying inverse FFT. The
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Fig. 2. Left: the original sources. Middle: mixed signal cor-

rupted by noise. Right: separated signal.
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Fig. 3. The Kurtosis of each frequency bin for speech and
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performance was compared with the separation results of IVA

algorithm that uses the fixed source prior in [5] for both sources

(speech and music).

We used signal to interference ratio (SIR) as the perfor-

mance measure. The SIR result of our adaptive IVA algorithm

was 11.73 dB. (When also the multivariate source prior for

music was fixed after learning its parameters from the clean

music data, the SIR result slightly increased to be 12.44 dB.)

The acoustic wave is shown in Fig. 2. The IVA algorithm

with the fixed source priors in [5] resulted in SIR = 5.89 dB

and even for noiseless case the result was as low as 9.01. Per-

ceptually, the separated speech is very clear with almost no

noticeable noise and distortion. For the separated music sig-

nal, the noise level is significantly reduced, although slight

distortion is noticed. The separated signals using IVA with

fixed sources in [5] has higher interference and contains ob-

vious noise because IVA is unable to denoise.

The kurtosis of the two sources is shown in Fig. 3. The

music has high kurtosis for low frequency components, while

speech has high kurtosis for high frequency components. The

figure shows that musical signal is closer to Gaussian (whose

kurtosis is 0), because music is the mixture of various instru-

ments. The difference in statistical properties explains that

previous IVA approaches work sub-optimally because it as-

sumes identical source prior for both sources.

5. CONCLUSIONS

We proposed a novel adaptive approach to IVA in order to

make up for its weaknesses. In the approach, where multi-

variate GMM is used as the source priors and sensor noise is

allowed, learning the parameters of the source prior, separat-

ing the sources, and denoising are achieved simultaneously.

We applied the new algorithm to 2 × 2 mixture problems

where one source type was assumed to be known and thus its

source prior could be trained in advance. The new algorithm

successfully separated a speech signal from a music signal

(which was assumed to be unknown) even in the presence of

sensor noise, while the IVA approaches that use multivari-

ate super-Gaussian densities as fixed source priors performed

sub-optimally, or poorly with noise.
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