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ABSTRACT

A physical modeling synthesizer is developed and used to
parametrically represent digital audio recordings of clarinet
soloists. Empirical data, in the form of acoustic impedance
measurements, are incorporated in the model de nition. Reed
dynamics are also included. Algorithms which calculate con-
trol parameters from source recordings are presented and ex-
amples of both the impedance measurements and the synthe-
sis output are provided. The synthesis results give further sup-
port to the idea that music can, in certain circumstances, be
adequately represented by a few low bandwidth control pa-
rameters. Additionally, the governing equations of clarinet
physical modeling are brie y reviewed.

Index Terms— music, modeling, signal synthesis

1. INTRODUCTION

Physical modeling is a method for synthesizing lifelike mu-
sical sounds. As opposed to additive synthesis, subtractive
synthesis, or granular synthesis, physical modeling relies on
a numerical simulation of the physics underlying instrument-
player systems [1]. As computing power has increased, this
approach has become increasingly viable. The main advan-
tage of the physical modeling paradigm is that it naturally
incorporates many aspects of music which can be dif cult to
realize with conventional synthesizers. For instance, given
the same set of control parameters and a suf ciently detailed
model, oscillations build up and decay in the model just as
they would in a real musical instrument.
A further advantage of physical modeling is that musi-

cal sounds are parametrically represented in terms of what
a player does. These control parameters, such as blowing
into a mouthpiece or pressing keys require signi cantly less
bandwidth for storage than CD quality digital audio. Some
promise exists, therefore, to create an extremely compact form
for musical audio/data that simultaneously allows for high-
delity reproduction and is based uponmusically relevant ges-
tures.
This paper outlines a preliminary attempt to construct such

a system in the case of monophonic clarinet music. There are
two aspects of this work: the implementation of a physical

model, and the development of algorithms which can extract
appropriate control parameters from source audio les. The
clarinet is one of the most studied instruments from the point
of view of physical modeling, which provides ample context
for the present study.

2. PHYSICAL MODEL

The basic equations governing the pressure oscillations of a
clarinet were presented by Schumacher [2]. Let pb(t) and
u(t) equal, respectively, the acoustic pressure and acoustic
volume velocity just inside the mouthpiece of the clarinet.
Call the pressure inside the mouth of the player (the blowing
pressure) pm(t).

pb =

∫
∞

0

h(t− τ)u(τ)dτ (1)

u = g

(
pm −

∫
∞

0

h(t− τ)u(τ)dτ

)
(2)

where

g(Δp) = UM
3
√
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2

(
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pext

) (
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(3)

Δp = pm − pb (4)

These are nonlinear integral equations involving the acoustic
variables. Equation (3) can be derived from the Bernoulli
equation [3] [4] while the constant parameters UM and pext

are, respectively the maximum volume ow and the extinc-
tion threshold (where the ow is cutoff due to the reed press-
ing against the mouthpiece lay). The behavior of the pressure
ow characteristic is shown in Fig. 1.
McIntyre, Schumacher, and Woodhouse [5] demonstrated

how the above equations t into a more general picture of
sound generation in a variety of instruments. TheMSWmodel
consists of a nonlinear system and a linear system in cascade
with a feedback tap and an external input representing the en-
ergetic contribution by the player. Here, the nonlinearity cor-
responds to the reed pressure- ow characteristic g while the
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Fig. 1. The pressure- ow characteristic for the reed valve (upper)
and its derivative (lower). The derivative is shown because, when the
system is linearized about an operating point the reed admittance is
determined by the slope of g. The admittance, in turn, is a factor in
determining thresholds of oscillation.

linear system corresponds to the impulse response of the clar-
inet bore h(t), equal to the Fourier transform of the acoustic
impedance Z(jω) of the bore. It is noted that the bore im-
pulse response will change depending on the ngering that
the player applies. This is the mechanism that allows different
notes to sound. The lter in (1) must therefore be understood
as a time-varying lter. In total, there are 46 playable notes
on a standard clarinet.
We distinguish our physical model as empirical because

it employs acoustic measurements taken on an actual clarinet.
In a later section, the measurement of the acoustic impedance
Z(jω) of the instrument air column is discussed. The collec-
tion of 46 impedance curves and impulse responses provides
a complete description of the clarinet bore for physical mod-
eling.
The equations above can be written discretely as follows.

Let L denote the length in samples of the bore impulse re-
sponse. For the simulations presented, L = 7000 with a sam-
pling rate fs = 44100 Hz. The coef cients of the lters for
different notes are stored in column vectors hi with the sub-
script i ∈ (0, 46) denoting the different bore responses (i = 0
is a zero valued lter which can be used during silent pas-
sages or rests). A state vector, containing the past values of u
is created.

Un =

⎡
⎢⎢⎢⎣

u[n]
u[n− 1]

...
u[n− L + 1]

⎤
⎥⎥⎥⎦ (5)

The bore pressure, at any sample, is then equal to an inner
product.

pb[n] = hT
i Un−1 (6)

u[n] = g(pm − hT
i Un−1) (7)

2.1. Reed Dynamics

The pressure- ow characteristic g does not address the dy-
namical aspects of the reed. Simulation of the clarinet using
only (2) carries the implicit assumption that the reed-valve
acts in a completely memoryless fashion. In actuality, the
reed is a cantilevered beam system which can potentially os-
cillate in a variety of vibratory modes and which has asso-
ciated with it material properties such as mass and stiffness.
Typically, the tip of the reed is assumed to obey the equations
of a damped harmonic oscillator. In our simulations, the reed
dynamics are included according to the prescription given by
[6]. The variable x is intended to be the displacement of the
reed tip from its resting position.

1

ω2
r

d2x(t)

dt2
+

qr

ωr

dx(t)

dt
+ x(t) = pb(t) (8)

In [6] the second order system of the reed is approximated
by an IIR lter (9). The lter coef cients depend upon the
desired resonance frequency and quality factor of the reed.
The pressure ow characteristic can be written as a function
of the reed displacement (10).

x[n] = b1pb[n− 1] + a1x[n− 1] + a2x[n− 2] (9)

u = Θ(1−pm +x)× (1−pm +x)× sgn(Δp)
√
|Δp| (10)

2.2. Impedance Measurements

The clarinet physical model described herein is empirical in
that it incorporates data derived from experiment. Speci -
cally, the experimental data consists of 46 impulse responses
which were calculated from impedance measurements taken
on a Selmer clarinet for 46 standard ngerings applied.
Impedance measurements were conducted with the piezo-

electric disk method [7]. There are, in the literature, a large
number of techniques for measuring acoustic impedance. We
found the piezo-disk method to be the most satisfactory. Cus-
tom impedance heads were constructed from Mouser piezo
benders fastened to short sections of 0.5 inch diameter PVC
pipe. Pressure recordings were taken with Isomax B6 Lava-
lier microphones. The generation of test signals and analy-
sis was done with a Stanford Research Systems SR780 Fre-
quency Analyzer. Calibration routines and Fourier inversion
were accomplished with a collection of Matlab functions.
A number of details are invovlved in the process of go-

ing from impedance measurements to discrete lter impulse
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Fig. 2. Magnitude and Phase of an impedance measurement
for a single note after calibration (written A3).

responses which can be used in a physical model. Speci cs
to our approach may be found in [8]. The original paper by
Benade and Ibisi [7] addresses calibration issues. Additional
information may be found in [9]. We do not delve too deeply
into this matter here because the length would be prohibitive
and it is not immediately relevant to the implementation of the
physicalmodel. The salient point is that the acoustic measure-
ments provided us with a complete description of the clarinet
instrument air column.

3. CONTROL PARAMETERS

Given a digital audio recording of a solo clarinet, our task is
to extract from it a set of control parameters that allow the
physical model to synthesize identical musical content. The
control parameters may be conceptually divided into two sets.
One set concerns the notes that were played and at what times
they occurred (equivalently, which ngering the player ap-
plied at any time). This information is captured in a matrix of
note onsets and pitches. Note segmentation can be performed
with cepstral or time-frequency analysis and we refer to [10].
The other set consists of the player blowing pressure and para-
meters relating to the embouchure. These are generally more
dif cult to infer from a recording.
Due to the inherent nonlinearities of the clarinet model,

our potential lack of knowledge about the acoustic environ-
ment in which a recording was made, and the noninvertibility
of the bore impulse response h(t) parameter estimation be-
comes a dif cult problem. However, it is clear that to recreate
the musical dynamics of a given recording the envelope of our
synthesized output should closely match the envelope of the
original. Moreover, the envelope of the output of the physi-
cal model is largely determined by the blowing pressure. The
blowing pressure control parameter, therefore, has been set

equal to a scaled version of the envelope of the recording we
are attempting to recreate.
It is an easy matter to devise an algorithm for computing

the envelope of any signal. Positive results were obtained by
passing the absolute value of solo clarinet recordings through
a low pass FIR lter. The envelope was calculated as in (11).
The lter coef cients of the lowpass lter hlp were deter-
mined with the Matlab function r1. An example of the out-
put of this algorithm is shown in Fig. 3.

env p = hlp ∗ |p| (11)

One caveat is worth noting. Due to reverberant effects,
the sound eld in a room will decay quickly but not instan-
taneously after a clarinetist stops playing a note. Even un-
der anechoic conditions the instrument itself will have a nite
ring-down controlled by the size of the support of the bore
impulse response. A microphone will capture this and the re-
verberation will ultimately re ect in the control parameters if
the blowing pressure is found by the envelope method above,
possibly eliding the player’s articulation. In ongoing work we
remove this effect.
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Fig. 3. Example of the envelope/blowing pressure computed from
a source recording, Fig. 4.

4. SYNTHESIS RESULTS

Synthesis examples from our empirical physical model are
presented in this section. Control parameters were computed
as outlined in the preceding section. The source recordings
were of a professional clarinetist playing in anechoic condi-
tions. A plot of the time domain waveforms of the original
source recording and the synthesized output of the physical
model are given in Fig. 4. Five notes are represented in
these waveforms. Time-frequency distributions of the same
ve notes are given in Fig. 5.
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Fig. 4. Original and synthesized time domain waveforms corre-
sponding to the same music.

5. CONCLUSION

A system for representing solo clarinet music through phys-
ical modeling has been demonstrated. In particular, we have
developed software in two complementary areas: the physical
modeling numerical simulation itself, and algorithms which
take solo clarinet audio recordings and furnish correct control
parameters for the physical model. Furthermore, the model is
empirical in that precise acoustic measurements are incorpo-
rated into its de nition. The physical modeling based repre-
sentation is highly compact. The impulse response data, the
note onsets and pitches and the blowing pressure parameter
(sampled at a rate of ≈ 50 Hz [8]) are all that are needed for
reliable synthesis.
A number of topics relating to the present work may be

pursued in the future. The empirical method we have fol-
lowed in constructing the physical model can be extended to
almost any other wind instruments. The data accompanying
such a project would likely be an invaluable aid in understand-
ing differences and similarities amongst instrument families.
Alternatively, the clarinet model may be improved upon by
including more details, such as the effect of the player’s vocal
tract and instrument radiation transfer functions.
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Fig. 5. Comparison of the original and synthesized spectra. Note
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