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ABSTRACT

This paper presents a new system that allows for intuitive

control of an additive sound synthesis model from perceptu-

ally relevant high-level sonic features. We suggest a general

framework for the extraction, abstraction, reproduction and

transformation of timbral characteristics of a sound analyzed

from recordings. We propose a method to train, tune and eval-

uate our system in an automatic, consistent and reproducible

fashion, and show that this system yields various original au-

dio and musical applications.

Index Terms— Sound Synthesis, Feature Extraction, SVM

1. INTRODUCTION

Nowadays, computers are already able to synthesize high qual-

ity sounds, and sound synthesis software has become largely

accessible. Yet, the use of these tools can be quite intimi-

dating and even counter-intuitive for non-technically oriented

users. Most of the time, the relation between a change of syn-

thesis parameter and its effect on perception of the synthe-

sized sound is not predictable. A key issue in order to make

rich sound modelling more widely available and easily usable

is the control of sound synthesis in a natural, intuitive way.

The past few years have witnessed a growing interest from

the Music Information Retrieval (MIR) community and the

music industry to find good sound descriptors for retrieval

and classification of audio files in large databases. This re-

search effort has provided the community with a set of well-

defined sound features. In this paper we aim at bridging the

gap between sound description and sound synthesis. We focus

on the mapping from perceptual features to sound generation

parameters. In our system, the user gives the desired sound

descriptors as an input to a synthesizer which will in turn cal-

culate a sound with these desired properties.

2. RELATED WORKS

A few studies have explored the control of audio synthesis

from perceptual parameters. We can distinguish three main

trends: the machine learning view, where a model of the tim-

bre is learned from audio data, the concatenative view, where

the timbre is “constructed” by the juxtaposition of pre-existing

sonic grains, and the signal processing view, where the trans-

formations on timbre are model-dependant and direct appli-

cations of the signal model affordances. The first illustration

of the machine learning point of view is found in [1] where

Wessel et al. managed to control an additive synthesis model

using artificial neural networks. With concatenative synthe-

sis [2], a sound is defined as a combination of pre-existing

samples in a database. These samples are already analyzed,

classified and can be retrieved by their audio characteristics.

Finally, in [3], Serra et al. proposed a set of timbral transfor-

mations based on Spectral Modelling Synthesis (SMS)[4]. By

explicitely translating and distorting the spectrum of a sound,

they achieved the control of vibrato, tremolo and gender trans-

formation of a voice. Our approach is influenced by the ma-

chine learning view, which appears to be more general and

independent of the sound analysis/synthesis model.

3. ANALYSIS/SYNTHESIS PARADIGM

We chose the additive synthesis model for its ability to syn-

thesize a large range of sounds. Unlike physical models, it is

based on original recorded sounds. It doesn’t require having

a theoretical representation of the physical properties of each

different instrument. Nevertheless, to obtain satisfactory re-

sults, additive models require controlling many synthesis pa-

rameters, which are not musical, nor intuitive.

3.1. Harmonic Additive Model

A quasi-periodic tone can be decomposed in a sum of sine

waves with time-varying amplitudes and frequencies [5].

y(n) �
N−1∑
k=0

ak(n) sin(2πfk(n)) (1)

We assume the sample y(n) can be reconstructed from the

fundamental frequency estimate vector fj (dimension NFrames)
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and the matrix of partial amplitudes Ai,j (dimension NHar-

monics by NFrames). We assume the influence of the phase

is not primordial for resynthesis. This basic analysis model

proves satisfactory in the context of this paper. We favor ex-

pressive control of synthesis over high quality of sound gen-

eration.

3.2. Principal Component Synthesis

We want to reduce the dimensionality of the parameter syn-

thesis space by finding a compact representation of the time-

varying amplitude matrix. For this purpose, we use the Prin-

cipal Component Analysis (PCA) technique [6], which com-

pute the most meaningful basis to re-express a noisy data set.

We propose a method to synthesize a quasi-harmonic sound

from the low-dimensional principal component decomposi-

tion of the harmonic amplitude matrix.

In the light of statistical analysis, one row of the partial

amplitude matrix Ai,j is a variable (a particular partial am-

plitude trajectory), and one column is a measurement (a par-

ticular spectrum) for the j-th analysis frame.

PCA tells us that it is possible to get an approximation Â
of the original matrix A from the low dimensional principal

component space by multiplication of the Principal Compo-

nent (PC) bases matrix and the time-varying envelope matrix.

Â ≈ FD, where the time-varying envelopes Di are trajec-

tories in the new PC basis F. The new PC bases represent

the “principal spectra”, and a time-varying partial amplitude

is a time-varying linear combination of those basis spectra.

With this technique, we are able to synthesize a sound from a

reduced set of PC synthesis parameters.

We now want to be able to predict those synthesis param-

eters (output or target) from fundamental frequency, loudness

and timbral features (input or controls).

4. FEATURE EXTRACTION

4.1. Controls/Inputs

The features are obtained from short-term additive analysis

based on the SMS model [4]. The data is organized in SDIF

time-tagged frames [7]. Each frame is composed of the fre-

quencies, amplitudes and phases of the quasi-harmonic com-

ponents. The SMS analysis window (BlackmanHarris92) size

is 1024 samples. Hop size is 256 samples. The sampling

rate 44100Hz. We kept 80 harmonics trajectories (dim(A) =
80 ∗ NFrames).

Fundamental frequency and loudness are the main contin-

uous features (independent from timbre) we extract and use

as controls for the synthesis. Fundamental frequency is cru-

cial for the quality of the resynthesis. We chose to use the

robust Yin algorithm [8] to extract an accurate fundamental

frequency from the audio signal. Additionally, we use a me-

dian filter and interpolates pitch during unvoiced regions to

produce a smooth pitch curve.
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Fig. 1. Pareto chart of the number of PCs against percentage

of variance expressed

We extract a loudness estimate by applying a loudness

summation model like those proposed by Zwicker and Scharf

[9]: I(n) =
∑N

k=1 ak(n).

The exploration of fine timbral control is also possible.

Our system is designed in such a way that it allows to “shape”

the synthesis of a sound using any kind of continuous feature

extracted from audio as a controller. For instance, we can

obtain a measure of brightness by computing the centroid for

each spectral frame [10]:C(n) =
∑N

k=1
ak.fk∑N

k=1
ak

(n).

Our high-level input is of dimension two (loudness and

fundamental frequency) by NFrames.

4.2. Targets/ Outputs

We have found a way to reduce the dimension of the target

space with PCA, and are able to resynthesize an estimate of

the original sound from those parameters without any signif-

icant perceptual loss. It is possible to choose the number of

Principal Components (NPCs) by entering the percentage of

variance of the data we wish to take into account. In Fig. 1 we

can see than most of the variance of our database is explained

by only 3 PC. From now on, we assume that our synthesis

parameters live in a 3D space.

The dimension of the target vector is now NPCs by NFrames.

In addition to dimension reduction, PCA allows the decorre-

lation of the new target vector, which is a good preprocess-

ing practice for the machine learning algorithm used for map-

ping. A problem of PCA decomposition is that the most sig-

nificant PC parameters don’t necessarily have an obvious re-

lation to human perception. We need another layer to map

perceptual, intuitive, musically relevant controls to this lower

dimensional synthesis parameter space. This task is handled

by the Support Vector Regression (SVR) algorithm.

The following section deals with the practical aspects of

training the SVR learner that maps sonic percepts to sound

generation parameters, taking into account our PCA synthesis

model.
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5. TRAINING AND RESULTS

5.1. Support Vector Mapping Machine

Support Vector Machines (SVMs) and kernel methods have

become increasingly popular tools. We chose to apply this

technique to the perceptual mapping problem based on good

results the SVM algorithms obtained in various surveys from

the machine learning community [11], and on the improve-

ment it could bring to previous related works. Compared to

other approaches, SVMs exhibit a lot of interesting properties.

Namely, we can build highly non-linear regression function

without getting stuck in a local minima. Moreover, there’s

only a few model parameters to pick, and the final results are

stable and reproducible, unlike neural networks models where

the result depends on the initial starting point. Finally, SVMs

have been proved to be robust to noise in many applications

[11].

5.2. Database

We normalize our dataset so that we have zero mean and unity

standard deviation. We end up with training examples of two-

dimensional (fundamental and loudness) real-valued vector as

input and three-dimensional (3 PCs) real-valued vector as out-

put. Our training set is extracted from an audio file of 2 min-

utes of solo saxophone with as much variability as possible

in the attack, dynamics, range, etc...We split our data into a

training set and a testing set (roughly 2/3, 1/3).

The support vector regression algorithm as described in

[12] works for only one output. It doesn’t work as is for mul-

tiple outputs. Thus we have to split our problem into n distinct

(and supposedly independent) function estimation problems,

considering each time a different “PC trajectory” as output, n
being the number of PC necessary for resynthesizing a sound

without significant perceptual loss.

Once the controls and targets are defined, computed and

standardized, we can start the training of the supervised ma-

chine learning algorithm.

5.3. Model selection

Resampling approaches, commonly used for SVM, are very

expensive in terms of computational costs and data require-

ments. The approach we used for parameter selection is based

on a work by [13]. They propose a practical analytical ap-

proach to SVM regression parameter setting based directlly

on the training data.

We use Cherkassky et al. prescription for the regulariza-

tion parameter C = max(|ȳ + 3σy|, |ȳ − 3σy|), where ȳ is

the mean of the training responses, and σyis the standard de-

viation of the training response.

The value of ε is chosen to be proportional to the input

noise level and we assume that the standard deviation of noise

σ can be estimated from data. We used the prescription in
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Fig. 3. Target/estimate correlation on the test set

[13] for noise variance estimation via k-nearest neighbor’s

method: σ̂2 = 1.5 1
n

∑n
i=1(yi − ŷi) where n is the number

of training data, yi the training response and ŷi the fit by the

k-nn regression.

After empirical comparisons, [13] proposed the depen-

dency equation: ε = τσ
√

ln n
n with τ = 3 giving a good per-

formance. The kernel width is selected to roughly reflect the

input range of the training/test data.

5.4. Evaluation Measures

For evaluating the performance of our system, we use two

functional measures on the test dataset. The first one is the

RMS error, which gives a measure of the overall distance be-

tween two trajectories and the second measure is the corre-

lation score, that indicates similarity of shape and synchrony

between two trajectories. Finally, the resynthesis from the es-

timated output also give us a perceptual, subjective equivalent

of those functional measures.

5.5. Results

The results of our experiment on the data we described in sec-

tion 7.1 are summarized in table 1. As can be seen in Fig.3,

the estimation of the principal component trajectory on the

test data (which controls have not been learned by the sup-

port vector machine before) is good and the system general-

izes well. The corresponding audio resynthesis examples are

available on the PerceptSynth website1.

1http://www.iua.upf.edu/~slegroux/perceptsynth
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PC trajectory RMS error Correlation score

First PC 0.009 0.991

Second PC 0.0159 0.99

Third PC 0.0534 0.973

Table 1. Results with a 2 min saxophone solo

6. APPLICATIONS

One of the most powerful feature of this system is its abil-

ity to change the original melody contour or loudness control

while preserving the musical identity of the audio sequence

on which the machine learning algorithm has been trained.

Besides, our model is well-suited for cross-synthesis, where

the control parameters of one instrument can be used in com-

bination with the “support vector timbre model” of another in-

strument. Another possibility of cross-synthesis is at the level

of the PC synthesis, where the PCs, or basis spectra, of one

instrument can be replaced by those of another instrument.

Due to the characteristics of the PC synthesis, our model

has an interesting property of scalability. The number of use-

ful PC bases can be chosen depending on the quality of the

sound required at the moment. This behavior is particularly

interesting in networked applications, where the available band-

width is variable.

In this paper we have mostly studied the control of a syn-

thesis model from loudness and fundamental frequency pa-

rameters, letting the machine learning component take care

of the overall timbre generation. But we have also managed

to control directly the properties of an instrument timbre such

as brightness. This property, allowing direct generation of

sound from continuous timbral features, is extremely inter-

esting, and suggests an analysis-by-synthesis type of applica-

tions. For instance, in the Music Information Retrieval com-

munity, the problem of finding relevant descriptors and judg-

ing their perceptual influence is still open. Our tool allowing

feature-based synthesis would prove useful.

7. CONCLUSION

We have proposed a system that allows for flexible and intu-

itive control of sound generation from high-level sonic per-

cepts. It provides the user with continuous control over a

sound directly analyzed from recordings. We devised an anal-

ysis/synthesis paradigm well-suited for a machine learning

approach to this non-linear mapping problem, and found a

way to reduce the dimensionality of the synthesis parameter

space, while preserving the auditory quality of the resynthe-

sis. We described a framework to train, tune and evaluate our

system in an automatic, consistent and reproducible fashion.

This system yields various original audio and musical appli-

cations.

In the future, we would like to extend our experiments on

larger datasets with as much variance as possible, take into

account temporal dependencies, and since the synthesis mod-

els presented are causal, realize a real-time implementation of

this perceptual synthesizer.
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