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ABSTRACT

Automatically extracting temporal information from musical

recordings is inarguably one of the most critical subtasks of

many music information retrieval systems. In this paper we

present a system for automatic note onset detection in pitched

non-percussive (PNP) musical sounds, which is the most chal-

lenging audio signal group for this task. We propose a new ap-

proach based on stable pitch cues and signal energy. A com-

putationally inexpensive method for feature extraction, which

efficiently suppresses vibrato, is combined with information

derived from the signal energy in the feature space. Onsets

are localized by a median filter based peak picking method.

The proposed method is tested against a database of annotated

violin recordings, covering a wide range of tempo and play-

ing styles like vibrato and staccato. Our system outperforms

prior state of the art systems with results for True Positives of

91.2% and False Positives of 9.2%.

Index Terms— Music, Information Retrieval, Feature Ex-

traction

1. INTRODUCTION AND RELATED WORK

Music is a highly structured and layered ensemble of sounds.

On one level of abstraction, note events produced by the ac-

tions of an artist provide key information, which can serve

as a baseline for extracting higher level musical information

in many other Music Information Retrieval (MIR) tasks. Each

note event comprises a specific note onset time, a duration and

a pitch. Note onsets technically represent a transient segment

of the audio signal, or more specifically they mark the instant

in time, when the signal starts to evolve from a steady state

to another steady state, i.e., from one note to the next. The

detection of onsets, which is to localize the instants in time of

these transitions, is what we are concerned with in this paper.

Most traditional approaches to onset detection [1] perform

an optional preprocessing step and then derive an intermedi-

ate signal or detection function, which is at a significantly

lower sampling rate than the audio signal itself and reduces

the signal to a more favorable representation. The key char-

acteristic of this representation or detection function is a well

suited feature, which highly correlates with the musical cues it

intends to unveil. This detection function can then be fed into

a peak picking method to find local maxima, i.e. onsets. Re-

cently more sophisticated approaches have been presented to

comprise higher level musical information via machine learn-

ing or statistical methods for extracting the musical cues from

various intermediate representations (e.g., [2]). In this paper

we focus on feature extraction while employing an existing

simple peak picking method.

A comprehensive evaluation of different detection func-

tions and their suitability for different types of audio signals

was published recently in [1]. The authors outlined and com-

pared different methods for finding onsets in musical signals

and provided information on which methods work best for

which signal class and which application. Based on these

comparisons Collins set up a more comprehensive evaluation

of onset detection functions, which is described in [3]. Subse-

quently he proposed a new method specifically designed for

PNP sounds [4]. This method was developed under the as-

sumption that the perception of stable pitch cues could be

linked to the segmentation of notes. He employed a pitch

tracker and derived onset information directly from changes

in pitch and signal energy.

In this paper we present a new method, also targeted at

PNP sound. In particular we focus on violin music produced

from a single instrument and recorded in a home environment.

Due to room reverberations and resonances of the violin body,

the decaying harmonics of a note often overlap with the har-

monics of the next note, especially when legato is played. In

addition, string instruments also provide the possibility to ex-

cite more than one string of the instrument at the same time,

i.e. double stops or triple stops. This and the non-percussive

playing style of bowed string instruments like the violin make

note onsets particularly difficult to locate. Most difficult cases

are represented by consecutive notes, where there is only a

small dip in loudness while the pitch is unchanged.

The rationale behind the method presented in this paper

is based on the observation, that for PNP musical sound, as it

is produced by stringed, bowed instruments, the most reliable

cue to locate onsets are spectral fluctuations. Our method cal-

culates an average of spectral change in consecutive frames to

generate a detection function and is inspired by an algorithm

originally presented by Boo et al [5].
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In this paper we first outline the algorithm used to de-

rive the onset locations in section 2. Section 3 describes the

database we used for evaluating our system and outlines a re-

cent method, which we re-implemented for comparison and

evaluation. In section 4 we present the results of this eval-

uation, followed by discussions and possible future work in

section 5.

2. PROPOSED METHOD

Our system follows a typical framework by first deriving a

sub-sampled detection function from the audio signal itself.

A peak picking method is then used to locate the onsets from

this detection function.

2.1. Detection Function

The key is to find features, which highly correlate with mu-

sical onsets, for the translation of a musical signal into a de-

tection function. For PNP sounds it is characteristic, that res-

onances are formed within the body of the instrument very

quickly after the string is excited. These resonances are rela-

tively stable while the note is played at a constant pitch with-

out vibrato. To exploit this observation, we employed the

correlation between time-wise consecutive frames of the au-

dio signal to localize regions of stable pitch. The Short-Time

Fourier Transform (STFT) with a window length of 1024 sam-

ples with a sampling rate of 44.1 kHz and 50% window over-

lap was used to transform the audio signal into the frequency

domain. The fact that the energy of higher order harmon-

ics is decreasing with a rising number of the order led to the

exclusion of higher frequencies from the correlation calcula-

tion. The explanation for that is, that the signal-to-noise ratio

is bound to become smaller with rising frequencies due to a

smaller signal energy. According to [1] and our observations,

the information in higher frequency bands, as exploited by the

HFC method [6] is useful for feature extraction from percus-

sive music, but not from non-percussive signals. Higher fre-

quency bands usually lead to a greater contribution of noise

to the resulting correlation, which is undesirable since it low-

ers the total correlation. Experiments showed, that a cutoff

at 8 kHz yielded the best results. Due to the same obser-

vation these lower frequencies were split into three subbands

of equal bandwidths. Each of these bands received a specific

weight to account for the difference in signal energy.

The detection function is then formed by the following

equation:

d(t0) = 1

/ t0+�w
2 �∑

f=t0−�w
2 �

b0∏
b=1

⎛
⎝( cb(t0, f)√

cb(t0, t0)cb(f, f)

)Wb
⎞
⎠
(1)

where w is the number of frames used to calculate and

average the correlation, t0 is the frame number of the spectro-

gram, cb is the covariance of the b-th subband of two frames
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Fig. 1. Warping compensation: In the upper figure fractions

of two frames y of an audio signal during vibrato performance

are displayed, 60 ms (5 frames) apart from each other. Clearly

the shift of the frequency due to the vibrato can be seen; the

harmonics of y(t0 + 5) emerge at slightly higher frequencies.

That yields a low correlation (e.g. a correlation coefficient of

0.104 in band 3) between y(t0) and y(t0 + 5). In the middle

figure y(t0), y(t0+5) and a selection of the 10 warped signals

of y(t0+5) is drawn, with y(t0+5)”’ being warped by 0.2 times

a semitone yielding the best match and thus also the best cor-

relation coefficient (0.932). The lowest graph shows the cor-

relation coefficient between y(t0) and y(t0 + 5) for y(t0 + 5)
being warped from minus to plus half a semitone.

and Wb is the weighting factor for that subband. b0 is the

number of subbands in one frame. The product leads to an

amplification of the detection function upon onsets in any of

the three subbands.

The resulting detection function sports values close to zero

during periods of stable pitch and comprises peaks on oc-

casions where the spectral characteristic of the audio signal

changes. As formulated in Equ. (1), each sample of the detec-

tion function is calculated from correlation coefficients of w
neighboring frames. The reason is, that considering more than

just one pair of frames averages out contributions through

randomly similar frames and flattens the detection function

during periods of stable pitch. An upper bound to w is de-

termined by the music characteristics. In our case we used

13 neighboring frames, which corresponds to around 150 ms.

From a musical point of view, this is a period that is shorter

than a quaver (for a tempo slower than 200 BPM) and thus

should guarantee stable pitches for this period in most cases.

When it comes to musical background, one can easily

spot that slight changes in pitch would disturb the reliabil-
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Fig. 2. The effect of warping on the detection function. The

upper figure displays a 1 second section of the spectrogram of

an audio signal with vibrato. In the lower figure, the locations

of the onsets are denoted with crosses and two detection func-

tions are drawn. The solid line represents a detection func-

tion without warping correction, the dashed line is corrected.

Clearly can be seen (as highlighted in the circle) that spikes

in the detection function caused by vibrato are suppressed by

the correction. Another effect though is, that the amplitude of

the detection function at onset locations is lowered

ity of correlation. Vibrato, an expressive feature widely used

among musicians playing stringed, bowed instruments; is a

challenge to any onset detection method aiming PNP sounds.

Vibrato is produced by rolling the stopping finger on the string

up and down, effectively shortening and lengthening the ex-

cited string. This leads to oscillating changes in amplitude

and pitch of usually less than +/- half a semitone. Although

the time-wise consecutive frames of slightly different pitches

appear to be very similar, the inverse correlation is sensitive to

even the slight changes in pitch. To account for this we intro-

duced a new method called warp-compensation. Equ. (1) is

modified in that each correlation coefficient cb not only repre-

sents the covariance of the frames at frame t0 and f , but is the

maximum of the covariance of these two frames, where the

spectrum at f is warped in 10 equidistant steps from minus

half a semitone up to plus half a semitone (Fig. 1). This ef-

ficiently compensates for small pitch changes due to vibrato.

A comparison between detection functions with and without

warping is illustrated in Fig. 2.

2.2. Peak Picking

Before the detection function is analyzed by a peak picking

method, it undergoes a preprocessing step. Due to the nature

of the detection function generation, the signal energy is com-

pletely uncorrelated to the detection function. That means,

not only changes in the spectrum cause peaks in the detection

function, but also very quiet portions of the signal may do so

due to noise. This is particularly severe when a piece is per-

formed in staccato playing style where each note is cut short

and followed by a very short period of silence. For this rea-

son the signal energy is used to mute sections of the detection

function, where the musical signal is absent or of very low

energy.

Finding candidates of onsets from the detection function

comprises the localization of local maxima in the detection

function. This can be done by simply searching for peaks,

steep rising edges or some other characteristic shapes, de-

pending on the feature used to create the detection function.

Our method searches for peaks after applying a threshold,

which is adapted to temporal fluctuations of the signal with

the help of a median filter. This method is particularly useful

for reducing the influence of occasional high spikes of the de-

tection function on the adaptive threshold and is similar to the

method presented in [1]:

δ̃(n) = δ + λmedian{|d(n − M)|, ..., |d(n + M)|} (2)

where δ̃(n) is the adaptive threshold as a function of n, δ is a

base threshold, λ is a weighting constant, d(n) is the detection

function and M is the window length of the median filter. All

peaks above this threshold are then combined to a single peak

if they happen to be not further apart than 50 ms from each

other and then this peak is marked as an onset.

3. EVALUATION

In this section we give a short description of the database used

for the evaluation and describe how we evaluated the perfor-

mance of the onset detection system.

3.1. Database description

All pieces used throughout the evaluation were recorded in an

ordinary room equipped with sound absorbing curtains to re-

duce reverberations. The pieces were selected to cover a wide

range of violin performances of different playing styles and

tempo ranging from slow to fast. 50% of the pieces contained

vibrato, several were played in staccato style and some con-

tained double stops (multiple strings played simultaneously),

slurs and legato. Overall the database contained 9717 onsets

and was annotated by subjects with musical education. For

the annotation process itself a proprietary tool was used, de-

veloped specifically for onset annotation.

3.2. Evaluation method and results

In order to evaluate the performance of the presented method

we re-implemented a method presented by Collins in [4], which
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Fig. 3. Comparison of detection functions. The upper fig-

ure displays a portion of the spectrogram of a performance

of Franz Wohlfahrt’s Etudes Op.45/34. In the lower figure

both detection functions are drawn as well as the humanly

annotated note onsets (as crosses). As can be seen clearly,

the inverse correlation method (solid line) sports clear peaks

around note onsets while featuring a low signal during notes

being played. On the other hand, the peaks in Collins’ method

(dashed line) are less sharp and its performance suffers from

overlapping notes (legato) due to its dependency on pitch con-

tours.

was also developed to address onset detection in PNP music.

In our re-implementation we used the YIN-algorithm [7] as

a front end for the extraction of pitch contours and achieved

similar results as originally reported.

As a measure for detection performance we employed the

widely used notation of True Positives (TP) and False Posi-
tives (FP), where the definition is as follows:

TP =
NumberofCorrectlyFoundOnsets

NumberofallFoundOnsets
(3)

FP =
NumberofCorrectlyFoundOnsets

NumberofallAnnotatedOnsets
(4)

For evaluating correctly extracted onsets a tolerance of

70 ms was used. Overall the reference implementation from

[4] yielded a TP of 62.37% and a FP of 24.43%. The pre-

sented warp-compensated inverse correlation achieved a TP

of 91.2% and a FP of 9.2%

4. DISCUSSION AND FUTURE WORK

In this paper we presented a new method for feature extraction

from PNP musical sounds for onset detection, which clearly

outperforms existing state of the art methods for this task. The

algorithm accurately discriminates onsets from non-onsets for

this signal class and yielded excellent results when tested against

our database in comparison to the state-of-the-art for PNP

sounds. Several problems of the current implementation like

the vulnerability of the detection performance to the presence

of staccato could be solved by incorporating higher level, mu-

sical knowledge, i.e. in a Bayesian framework or in a frame-

work recently presented by Klapuri et al. in [2]. Another

solution could be to dynamically adapt the width and number

of bands considered for the correlation. When staccato is per-

formed, the signal in higher frequency bands decays earlier

and much faster than in lower bands and thus emphasizes the

undesirable effect of noise in higher bands on the detection

function. Nevertheless we have shown that the inverse corre-

lation method is capable of very accurately unveiling tempo-

ral information for PNP sound and is a promising candidate

for use as a front-end in Music Information Retrieval tasks.
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