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ABSTRACT

In this paper, we discuss a new approach named Harmonic-

Temporal-Timbral Clustering (HTTC) for the analysis of single-

channel audio signal of multi-instrument polyphonic music to
estimate the pitch, onset timing, power and duration of all the
acoustic events and to classify them into timbre categories si-
multaneously. Each acoustic event is modeled by a harmonic
structure and a smooth envelope both represented by Gaus-
sian mixtures. Based on the similarity between these spectro-
temporal structures, timbres are clustered to form timbre cat-
egories. The entire process is mathematically formulated as a
minimization problem for the /-divergence between the HTTC
parametric model and the observed spectrogram of the mu-
sic audio signal to simultaneously update harmonic, tempo-
ral and timbral model parameters through the EM algorithm.
Some experimental results are presented to discuss the perfor-
mance of the algorithm.

Index Terms— analysis of multi-instrument music, EM
algorithm, Harmonic-Temporal-Timbral Clustering (HTTC)

1. INTRODUCTION

Analysis of single channel multi-instrument music signal has
been one of the ultimate goals of music signal processing,
with the ambition of obtaining a total estimation of each acous-
tic event, including the information on the instrument or the
timbre. This problem has a wide range of potential appli-
cations including music transcription with part division, part
tracking, and music information retrieval (MIR). However, it
has also been one of the most intricate problems, composed
of several difficult sub-problems such as multipitch analysis
and instrument recognition.

So far, motivated by the psychological theory of auditory
scene analysis [1], we have developed a method for multi-
pitch analysis called Harmonic-Temporal Clustering (HTC)
[2]. HTC decomposes the spectral energy of the signal in
the time-frequency domain into acoustic events, which are
modeled using acoustic object models with a harmonic and
temporal 2-dimensional structure. It is thus able to estimate
information such as Fjy frequency, onset timing, etc., for each
acoustic event. Unlike conventional frame-wise approaches

TNow with NTT Communication Science Laboratories

1-4244-1484-9/08/$25.00 ©2008 IEEE

113

such as [3, 4], HTC deals with the structures in both time and
frequency directions simultaneously and shows high perfor-
mance. In this paper, we present a new approach for multi-
instrument music analysis which simultaneously realizes a
clustering of the spectral energy into acoustic events and a
classification of each acoustic event into timbre categories ac-
cording to their similarity with regard to the timbre feature.
This approach is developed as an extension of HTC.

Although instrument recognition, modeling of musical in-
strument sounds and multipitch analysis have been considered
as difficult problems, some approaches dealing with poly-
phonic signal have recently been developed [6]. These meth-
ods usually handle the problem of instrument information anal-
ysis separately from multipitch analysis, resulting in a a two-
step approach which first extracts the features for each acous-
tic event from the result of multipitch analysis, conducted as
a prior processing, then performs classification in the timbre
space [7, 8], training of the instrument sounds model [9] or
identification of the source instrument through matching with
learned timbre features [10, 11]. In another approach, a sys-
tem visualizing frame-by-frame the probability of existence
of each instrument frame-by-frame without estimating the Fj
information has also been developed [12].

However, we consider that multipitch analysis and timbre
clustering should be realized simultaneously. From the es-
timation of the Fy frequency of polyphonic music, one can
derive a timbre clustering of the acoustic events. Conversely,
estimation of the timbre structure for each acoustic event can
give clues for the separation of overlapped harmonics from
several events and reduce errors such as half-pitch or double-
pitch errors, thus enabling higher performance of the multip-
itch analysis.

From another standpoint, when we listen to music per-
formed with multiple instruments, we can usually naturally
classify acoustic events into timbre categories according to
similarity of their timbre feature, even if the music is played
with unknown instruments. In this paper, our goal is to pro-
pose a computational method which realizes a learning sys-
tem similar to what humans perform.

‘We name the unified analysis we propose for multi-instrument

music Harmonic-Temporal-Timbral Clustering (HTTC).
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2. APPROACH FOR HTTC

2.1. Generative Model for the Spectral Energy

Consider the observed power spectrum time series W (z, t)
of a music acoustic signal, where z is log-frequency and ¢
is time. This spectrum W (x,t) is assumed to be generated
as the sum of the spectral energy corresponding to acous-
tic source events performed with different onset time, pitch,
power and duration and which belong to an unknown timbre
category, as is shown in Fig.1.

Therefore, the problem we have to solve is an inverse
problem to estimate the parameter set © which best approx-
imates W (z,t) as the sum of K parametric acoustic object
models gx(z, t; ©) corresponding to spectral energy patterns
originated from a single source. The parameter set © in-
cludes all the parameters of each acoustic event, such as Fjy
frequency, onset timing and the timbre category the source be-
longs to, and the parameters of each timbre feature, which we
shall define in the following section. Estimation is performed
simultaneously on all the parameters.

2.2. Definition of Timbre

Although many definitions of timbre or instrument have been
considered in previous works, it is still ambiguous. Some def-
initions treating three elements of music sounds, i.e., loud-
ness, pitch and timbre, say that timbre is the total feature
which does not depend on Fjy frequency and power. In addi-
tion, timbre feature can also be considered independent from
the duration according to our general knowledge.

In this paper, timbre feature can be defined as the shape of
spectral energy in time and log-frequency space which does
not depend on Fj, spectral power, onset, and duration. For
example, spectral energy shapes for the piano and the violin
are shown in Fig.2. There are many differences between these
two shapes, both in the spectral power of the partials and the
temporal structure. Therefore we can consider that the differ-
ence in timbre is derived from the difference of shape of the
spectral energy, and that the shapes of acoustic events classi-
fied into the same timbre category should look alike regard-
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Violin

Fig. 2. Example of Timbre Structure. left: piano, right: violin

less of the pitch, power, onset timing and duration.

We shall note that this definition of timbre is simple and
does not aim at expressing all the features of timbre in a single
instrument. Timbre clustering in HTTC might thus face some
limitations as an instrument recognition method, and make
some mistakes as we humans sometimes do too.

2.3. Justification of our approach

A very interesting point in music is that acoustic events from
the same instrument but with different durations are recog-
nized as belonging to the same timbre category. This shows
that a simple pattern clustering in the time-frequency domain
can not account for timbre, and that the clustering of the tim-
bre categories and the estimation of the audio object param-
eters (including duration) need to be performed simultane-
ously. This justifies our approach to perform jointly the clus-
tering of the timbre categories and the estimation of the audio
object parameters.

3. HTTC MODEL

3.1. Parametric Model for the Timbre Structure

First, as we defined in the previous section, the timbre feature
is expressed in time-frequency space and can be modeled as a
parametric structure corresponding to the energy distribution
originated from a single source. Assuming that we are deal-
ing with pitched instruments in this paper, the source energy
is characterized by its harmonic structure and its time dura-
tion. We model this structure with a 2-dimensional Gaussian
Mixture Model (GMM) distribution T (z, ¢; ©) described as:

T.(x,t;0) = Y Tony(r,t;0) (1)
n,y
Venlen,y —@=loem? (t—u¢)?
Tc,n,y(_@,t;@) = enreny, 202 292 ©)

2ro¢
1, Ve, Vn, Zucnu =1, (3)

Y
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n

where ¢ denotes the index of the timbre category, n is the
index of the partial, y is the index of the GMM for time du-
ration, v, and u., denote variables corresponding to the
relative energy of the partials and the time envelope respec-
tively in the c-th timbre structure, and ¢ and v denote the fre-
quency and time spreads of every 2-dimensional Gaussian re-
spectively, which are considered constant in the HTTC model.
The model’s shape is shown in Fig. 3,
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Fig. 3. Timbre Structure. left: the entire shape, upper right:
GMM in the log-frequency direction, lower right: GMM for the time
duration

Table 1. Parameters of the HTTC Model

denotation physical meanings

Wi total energy of k-th source

Lk pitch contour of k-th source

Tk onset time of k-th source

Vi duration of k-th source

Ck timbre category which k-th source belongs to
Ve,n relative energy of n-th harmonic in c-th timbre
Ue,y coefficient of the power envelope of c-th timbre

3.2. Acoustic Object Model using Timbre Structure

Next we describe the acoustic object model corresponding to
the energy of a single acoustic source. The 2-dimensional
shape of each object model can be expressed with the timbre
structure T¢.(x, t; ©) modeled in the previous section. There-
fore, according to the definition of timbre, in addition to the
timbre category cj, deciding the shape of the object model, the
k-th acoustic object has the pitch contour py, the onset time
Tk, the total energy wy, and the duration v as parameters
which are independent from the timbre structure.

Finally, in order to control the time duration of each object
independently of the time envelope of the timbre structure, the
model can multiply the parameters u., , of the time envelope
by a time muting function R(¢; v, ) which is equal to 1 before
the dPration v and then drops to 0 as the sigmoid function

14eP(t—7k) "
Altogether, the k-th acoustic object model can be described
as )
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4. UPDATING PARAMETERS

4.1. Decomposition of Spectral Energy

As we explained in the previous section, the problem we have
to solve is to estimate the model parameters © of each acous-
tic source and each timbre structure listed in Table 1 from the
observed energy pattern W (z,t). It can be solved through
an EM-like algorithm, introducing spectral masking functions
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myg(x,t) which decompose W (z,t) into acoustic objects at
each coordinate (x,t) (0 < my(z,t) < LY, mi(z,t) =
1), and optimizing the model parameters and the mask func-
tions iteratively as proposed in our previous work [2]. Since
the partitioned cluster my (z, t)W (z, ) is expected to be the
spectral energy distribution of a single acoustic source, this
decomposion of energy is beneficial not only for the esti-
mation of the model parameters depending on each acous-
tic source but also for timbre clustering and estimation of the
timbre structure which needs the shape of a single acoustic
source.

4.2. Minimization of the Objective Function Using the EM
Algorithm

In order to estimate the model parameters, we introduce as ob-
jective function the sum of the distances, measured using the
I-divergence, between the partitioned clusters my (z, t)W (z, t)
and the acoustic source models g (z, t; ©), including the tim-
bre structure T, (z,t; ©):

Z T ©)

mk(x t)W(x t)

mk(x W (x,t) — qx(z, t; @)dacdt (6)

J =

Jp =

Our problem can be regarded as the minimization of (5).
The minimization of J can be realized by the iteration of
the update rule shown in Fig.4 and described below:
(1) Update the mask functions my(z, t)
(2) Estimate the parameters depending on each acoustic
object such as wy, ik, Tk, and yi
(3) Estimate the timbre category c;, of each object from J,
as the discriminant function
(4) Estimate the GMM parameters v, Uc,y representing
the timbre structure.
Since each step of this update rule can reduce the objective
function (5) successfully, the iteration of these update steps
can yield to locally optimal parameters. For length purposes,
we skip here the description of the details of the update equa-
tions for each parameters, which can be obtained analytically
by the combination of an undetermined multipliers Lagrange’s
method and a k-means-like algorithm for the update of ci.

5. EXPERIMENTS AND DISCUSSION

5.1. Experimental Setup

We experimentally tested our approach, HTTC, from an audio
input. An input waveform data of about 10 seconds in a vio-
lin sonata by Frank performed with violin and piano was ob-
tained by converting the MIDI data into WAV data sampled at
16kHz. In addition, the initial pitches and onset times of each
acoustic source model was set correctly in order this time to
discuss the performance of timbre clustering and learned tim-
bre shape specifically. The input piano-roll data and the con-
verted wavelet spectral energy are shown in Fig.5.
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Fig. 5. Input Data. left: input piano-roll data, right: obtained
spectral energy distribution

5.2. Experimental Results and Discussion
5.2.1. Result with the number of timbre categories set to 2

First, we tested our algorithm with the number of timbre set
to 2. The obtained piano-roll data and timbre shape are shown
in Fig.6. We can see in the figure that many notes of the violin
and some notes of the piano in the low frequencies were clas-
sified into the same timbre category. We think that the reason
for this is that the harmonic structures are different between
notes with different Fy within a single instrument.

5.2.2. Result with the number of timbre categories set to 3

We tested next the same input signal with the number of tim-
bre categories set to 3. The obtained piano-roll data and tim-
bre shape are shown in Fig.7. In this result, most of the events
belonging to the violin were classified into the third category
(blue line) and few notes of the piano in the low frequencies
were classified into it. Therefore, we think that notes of the
violin and the piano were well classified into different timbre
categories.

6. CONCLUSION AND FUTURE WORK

In this paper, we proposed a new approach for multi-instrument

musical analysis, called Harmonic-Temporal-Timbral Clus-
tering (HTTC), and we experimentally evaluated the perfor-
mance of HTTC with a music signal consisting of piano and
violin. Future work will include the design of a timbre struc-
ture model depending on Fj for a better instrument recogni-
tion.

This research was partly supported by MEXT Grant-in-
Aid #17300054.
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Fig. 7. Experimental result with 3 timbre categories
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