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ABSTRACT
From an audio perspective, the present state of teleconferencing
technology leaves something to be desired; speaker overlap is one
of the causes of this inadequate performance. To that end, this pa-
per presents a frequency-domain implementation of convolutive BSS
specifically designed for the nature of the teleconferencing environ-
ment. In addition to presenting a novel depermutation scheme, this
paper presents a least-squares post-processing scheme, which ex-
ploits segments during which only a subset of all speakers are active.
Experiments with simulated and real data demonstrate the ability of
the proposed methods to provide SIRs at or near that of the adaptive
noise cancellation (ANC) solution which is obtained under idealistic
assumptions that the ANC filters are adapted with one source being
on at a time.

Index Terms— Microphone arrays, blind source separation, in-
dependent components analysis.

1. INTRODUCTION

Due to the environmental impact of everyday commuting and
the busy lifestyles of today’s professionals, audio- and video-
conferencing (collectively termed “teleconferencing”) is expected to
become the primary method of multi-party interaction in the future.
In terms of audio, the present quality of the teleconferencing expe-
rience is inadequate for many reasons; one of these is the presence
of overlapped speech from multiple participants, resulting in poor
intelligibility for the remote listener. With the decreasing cost of
personal communication devices, it is common for participants to be
accompanied by a device with an embedded microphone. It is pos-
sible to connect the devices of the participants over a network, al-
lowing for multi-channel processing of the microphone recordings.
Ad hoc microphone arrays differ from centralized arrays in several
aspects: the inter-microphone spacing is generally large, leading to
spatial aliasing. Since the various microphones are not connected
to the same clock, some form of network synchronization is neces-
sary. Notice also that each speaker is usually much nearer to his/her
microphone than that of the other participants; thus the input signal-
to-interference ratio (SIR) is high.

The problem of blindly separating instantaneous mixtures of in-
dependent signals is covered in [1], [2], and prominent algorithms
include [3], [4]. However, the speech mixtures received at an array
of microphones are not instantaneous but convolutive; the convolu-
tive blind source separation (BSS) [5] task may be tackled in either
the time- or frequency-domain. Notable time-domain solutions are
detailed in [6] and [7]. The frequency-domain approach [8] decom-
poses the signals at the array into narrowband frequency bins and
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processes each bin using well-established instantaneous BSS meth-
ods. The separation of speech sources with distributed microphones
is a recent idea described e.g. in [9].

It is interesting to note that the vast majority of BSS algorithm
evaluations are performed on recordings during which two or more
speakers are unnaturally speaking simultaneously and without any
regard for the other speaker(s). This scenario does not represent re-
ality. Even in a “cocktail-party” environment, it is unreasonable to
assume that all signals are active across all time. In a multi-party
conversation, only a single speaker is active during many segments.
Non-blind techniques such as adaptive noise cancellation (ANC)
[10] exploit the single-source case to estimate the transfer functions
from the interference to the primary sensor. While blind techniques
do not have knowledge of the on-times of the various sources, such
information may be estimated from the separated signals.

This paper presents a frequency-domain approach to blind sepa-
ration of speech that is tailored to the nature of the teleconferenc-
ing environment. In addition to presenting a novel permutation-
solving scheme, we propose a least-squares post-processing of the
frequency-domain independent components analysis (ICA) outputs.
The presence of single-speaker segments (and in general, any seg-
ments during which the set of active speakers is a subset of the set of
all speakers) is exploited to compute more accurate estimates of the
frequency-domain mixing matrices.

2. SIGNAL AND SEPARATION MODELS

Consider an array of M microphones where the output of the mth
microphone is denoted by xm(k), where k is the discrete-time sam-
ple index. Assuming N sources whose signals are given by sn(k),
the output of themth microphone is the convolutive mixture

xm(k) =

N�

n=1

Lh−1�

l=0

hmn(l)sn(k − l) + vm(k), m = 1, . . . , M,

(1)
where hmn is the finite impulse response (FIR) channel from source
n to microphonem,Lh is the length of the longest impulse response,
and vm(k) is the additive sensor noise at microphonem. It is gener-
ally assumed that the source signals are mutually independent. The
task of blind source separation (BSS) in such convolutive mixtures
is to recover the source signals sn(k) given only the microphone
recordings xm(k). Generally speaking, this requires N ≤ M .

The separation of the signals is achieved by applying a FIR filter
to each sensor’s output and then summing across the sensors:

yn(k) =

M�

m=1

Lw−1�

l=0

wnm(l)xm(k − l), n = 1, . . . , N, (2)
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where yn(k) is the estimate of sn(k), wnm(k) is the filter applied
to microphonem in order to separate source n, and Lw is the length
of the longest separation filter.

Taking the Fourier transform of (1) and rewriting in matrix no-
tation, we obtain the instantaneous mixture model

x(ω) =

N�

n=1

h:n(ω)Sn(ω) + v(ω) = H(ω)s(ω) + v(ω), (3)

where

x(ω) =
�

X1(ω) X2(ω) . . . XM (ω)
�T

,

h:n(ω) =
�

H1n(ω) H2n(ω) . . . HMn(ω)
�T

,

v(ω) =
�

V1(ω) V2(ω) . . . VM (ω)
�T

,

H(ω) =

�
����

H11(ω) H12(ω) . . . H1N (ω)
H21(ω) H22(ω) . . . H2N (ω)
...

...
. . .

...
HM1(ω) HM2(ω) . . . HMN (ω)

�
����

s(ω) =
�

S1(ω) S2(ω) . . . SN (ω)
�T

,

and Xm(ω), Hmn(ω), Sn(ω), and Vm(ω) are the discrete-time
Fourier transforms of xm(k), hmn(k), sn(k), and vm(k), respec-
tively. In the frequency-domain, the separation model becomes

y(ω) = W(ω)x(ω), (4)

where y(ω) =
�

Y1(ω) Y2(ω) · · · YN (ω)
�T is a vector of

the Fourier transformed separated signals yn(k) and W(ω) is the
separation matrix with [W(ω)]nm = Wnm(ω) .

3. CONVOLUTIVE BSS IN FREQUENCY DOMAIN

To enable frequency-domain processing, the time-domain micro-
phone signals xm(k) are transformed to the frequency-domain via
the short-time Fourier transform:

Xm(ω, τ) =

∞	
l=−∞

xm(l)μ(l − τ)e−jωl, (5)

where μ(l) is a windowing function with μ(l) = 0, |l| > W , and
τ is the time frame index. Similar definitions hold for Vm(ω, τ),
Sn(ω, τ), x(ω, τ), v(ω, τ), and s(ω, τ). Hence (3) and (4) become

x(ω, τ) = H(ω)s(ω, τ) + v(ω, τ), (6)

y(ω, τ) = W(ω)x(ω, τ). (7)
For each frequency ω, the complex-valued ICA procedure computes
a matrixW(ω) such that the components of the output y(ω, τ) are as
mutually independent as possible. This is achieved through either a
complex version of the FastICA algorithm [11] or a complex version
of InfoMax [3] along with the natural gradient procedure of [4], [8].

Assuming that the components of s(ω, τ) are mutually in-
dependent and that the microphone noise v(ω, τ) is zero, the
separation matrix W(ω) derived by ICA will be equal to the
pseudo-inverse of the underlying mixing matrix H(ω) up to a
permuation and scaling, namely, W(ω) = Λ (ω)P(ω)H+(ω),
where Λ (ω) = diag (λ1, . . . , λN ) is a diagonal matrix
and P(ω) is a permutation matrix. Thus y(ω, τ) =
[λ1sΠ−1

ω (1)
(ω, τ), . . . , λNs

Π−1
ω (N)

(ω, τ)]T , where Πω(i) = j is

the permutation mapping between the ith source and the jth sep-
arated signal at frequency ω. Moreover, denoting W+(ω) =
H(ω)P−1(ω)Λ−1(ω) =

�
a:1 a:2 · · · a:N

�
, it is easy to

show that a:n(ω) = h
:Π−1

ω (n)
(ω)/λn. The challenge in convolu-

tive BSS is to determine P(ω) and Λ (ω) at each frequency.

4. SOLVING THE PERMUTATION PROBLEM

Recently, a permutation solving scheme that is applicable to distrib-
uted microphones has been proposed in [9]. Unlike the methods
based on source localization that utilize the phases of the columns
a:n(ω) (which cannot be used with distributed mics due to aliasing),
only the magnitudes are taken into account. For ease of presenta-
tion, if u =

�
u1 u2 · · · uNu

�T is a complex vector, then
u′ =

� |u1| |u2| · · · |uNu |
�T is the vector u but with the

phases of each element discarded. In order to remove the scaling
ambiguity that appears in the columns a′:n(ω), [9] proposes to divide
successive elements of each column in order to remove the scaling
factor. In this paper, a different approach is taken at solving the per-
mutation problem. At each frequency, the magnitudes of the vectors
a:n(ω) are normalized to unit norm:

â′:n(ω) =
a′:n(ω)

‖a′:n(ω)‖ =
h′

:Π−1
ω (n)

(ω)

‖h′
:Π−1

ω (n)
(ω)‖ , (8)

thus removing the scaling factor, which is constant over the entries
of a fixed column a:n(ω). The resulting normalized column vectors
reflect the relative energy attenuation experienced between source
Π−1

ω (n) and the array of microphones. Each source is identified by
its own vector of relative attenuation values, which are independent
of frequency and may be used to solve the permutation ambiguity.

Notice that in the teleconferencing environment, the attenuation
experienced by a speaker at his/her microphone will be significantly
less than that experienced by the same speaker at the other partici-
pants’ microphones. Thus, we propose a de-permutation scheme that
assigns the vector â′:n(ω) to the speaker identified by the largest el-
ement of â′:n(ω). Specifically, h′:j(ω) =


N
i=1 pij(ω)a′i(ω), where

pij(ω) = 1 if j = arg maxn â′
ni(ω) and pij(ω) = 0 other-

wise. Notice that with this scheme (termed “maximum-magnitude”
or MM), if two columns exhibit a maximum at the same row, the
synthesized signals will contain components from multiple source
signals at a particular frequency. However, a more detrimental swap-
ping of the coefficients from different sources will not occur.

It is also possible to cluster the relative attenuation vectors â′:i(k)
of all frequencies into N clusters, and perform a least-squares opti-
mization across all possible one-to-one permutations of 1, 2, · · · , N .
In that case, the depermutation is equivalent to that of [9]. The clus-
tering operation is symbolically written as:

{c1, σ1, · · · , cN , σN} = cluster
�∀ω, â′:1(ω), · · · , â′:N (ω)

�
(9)

where cn as the centroid of the nth cluster Cn: cn =



a∈Cn

a
|Cn| ,

where |Cn| is the number of elements in Cn, and σ2
n =


a∈Cn

‖cn−a‖2

|Cn| is the variance of cluster n. A common clustering
algorithm is the k-means algorithm [12]. Once the clusters are deter-
mined, the permutation mapping is computed using the least-squares
optimization:

Πω = arg min
Π

N	
n=1

‖cn − â′:Π(n)(ω)‖2, (10)

where Π denotes all permutations of 1, 2, · · · , N .
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5. LEAST-SQUARES POST-PROCESSING

Conventional ICA-based convolutive BSS does not explicitly take
the microphone noise into account in its solution. We rewrite (6) to
include F frames:

X(ω) = H(ω)S(ω) + V(ω), (11)

where

X(ω) =
�
x(ω, 1) · · · x(ω, F )

�
,

S(ω) =
�
s(ω, 1) · · · s(ω, F )

�
,

V(ω) =
�
v(ω, 1) · · · v(ω, F )

�
.

We seek an approximate factorization of microphone measurements
X(ω) into matricesH(ω) and S(ω) such that the squared error of the
microphone noise ||V(ω)||2 is minimized. This is clearly trivial to
achieve if there are no constraints on S(ω). For example, if there are
N = M simultaneously active sources, then we may set H(ω) = I
and S(ω) = X(ω) to obtain zero error. However, if it is known that
for some frames of S(ω) a subset of the sources are inactive, then
the mixing matrix H(ω) becomes constrained. For example, if only
sources n1 and n2 are active in frames τ ∈ A12, then the set of vec-
tors {X(ω, τ) : τ ∈ A12} determines the subspace spanned by the
columns h:n1(ω) and h:n2(ω), while if only sources n1 and n3 are
active in frames τ ∈ A13, then {X(ω, τ) : τ ∈ A13} determines the
subspace spanned by the columns h:n1(ω) and h:n3(ω). Intersecting
these subspaces determines the column h:n1(ω) (up to scale). Thus
this least squares approach can refine H(ω) using knowledge of the
frames during which a subset of the sources are inactive.

We start with an estimate of which speakers are inactive by ap-
plying speaker activity detection (SAD) to the ICA outputs (7). In
this paper, a simple energy-based threshold detection is used. For
each source n ∈ {1, ..., N}, let Bn denote the set of frames for
which source n is inactive according to SAD. By adding speech
inactivity constraints to (11), we obtain the following optimization
problem:

Mininize ||V(ω)||2 (12)
s.t.

X(ω) = H(ω)S(ω) + V(ω)

Sn(ω, τ) = 0, ∀τ ∈ Bn, n ∈ {1, ..., N}.

To solve this problem, we start with an estimate of H(ω) as
the pseudo-inverse of the ICA result, i.e., H(ω) = W(ω)+. Then
it is straightforward to solve for S(ω). Specifically, considering
each column of S(ω) separately, let s̃(ω, τ) be the subvector of
s(ω, τ) consisting of only the active sources Sn(ω, τ) where τ ∈
{1, ..., F} \ Bn , and let H̃(ω) be the submatrix of H(ω) consisting
of only the corresponding columns. Then

s̃(ω, τ) = H̃+
(ω)x(ω, τ)

minimizes the norm of v(ω, τ) under the speaker inactivity con-
straints. Performing this for all frames τ minimizes the squared error
||V(ω)||2 under the inactivity constraints.

Suppose now we fix the S(ω) just determined, and re-solve for
H(ω) in (12) to minimize ||V(ω)||2 still further. Since S(ω) is fixed,
(12) becomes an unconstrained least square problem:

MinimizeH(ω)||X(ω) −H(ω)S(ω)||2. (13)

Its solution is

H(ω) = X(ω)SH(ω)(S(ω)SH(ω))−1 (14)

where SH is the conjugate transpose of S.
Iterating this procedure (solving S(ω) for fixed H(ω) and then

solvingH(ω) for fixed S(ω) ) is clearly a descent algorithm that min-
imizes the same metric ||V(ω)||2 in each step and hence it converges.
This potentially improves the mixing matrix H(ω) = W+(ω) ob-
tained by ICA, under the constraint that some of the sources are in-
active in some of the frames. Note that if all sources are active in all
frames, then the initial mixing matrix H(ω) determined from ICA
remains unchanged by these iterations.

Given speech activity detection outputs, one can solve (12) to
obtain an improved mixing matrix H(ω), an improved separation
matrix W(ω) = H+(ω), and an improved source separation (7).
The newly separated sources can be used to re-estimate the inactive
sources in each frame, thus resulting in a new optimization problem
(12) where the inactivity constraints are modified. One could once
again solve this problem by using the same procedure as described
above. If the newly obtained speech activity detection outputs are
more accurate, the results obtained by solving (12) will also be im-
proved. Unfortunately there is no effective way to determine whether
the speech activity detection is improving. To be conservative, we
usually perform 2 − 3 iterations of speech activity detection in our
experiments.

This section has described a post-processing procedure to mini-
mize the norm of the error in the mixing model (12). A correspond-
ing algorithm may also be developed to minimize the norm of an
error in the separation model,

Y(ω) = W(ω)X(ω) + U(ω),

where U(ω) is the error under constraints that some components of
Y(ω) are zero. The principles are similar, but the resulting separa-
tion filters will be different. Due to space constraints, the develop-
ment is not shown in this paper; however, the performance of the
proposed scheme under both models is given in the next section.

6. EXPERIMENTAL EVALUATION

The proposed algorithms are evaluated using both synthetic data –
generated using the image method [13] – as well as real recordings
taken in an actual conference room with moderate reverberation.

For the synthetic data, the signal-to-noise ratio (SNR) is 20 dB
and the additive noise is spatially uncorrelated and temporally white.
The simulated room’s reverberation time is T60 = 300ms. The sim-
ulations employ anM = 2 element array with the two microphones
located at (203.2, 228.6, 101.6) m and (101.6, 228.6, 101.6) m, re-
spectively. The two speakers are located at (254, 228.6, 101.6) m
and (50.8, 228.6, 101.6)m, respectively. The sampling rate is 8kHz,
with a framelength and frame-shift of 4096 and 1024 samples, re-
spectively. Each speaker speaks for 4 seconds, with the level of
overlap between the two speakers being varied. Four levels of over-
lap are simulated: 0, 25, 50, and 100%. The least-squares algorithm
parameter is δ = −3dB, determined heuristically.

For the real data, the room dimensions are 4-by-7-by-3 m. The
two microphones (which are synchronized in hardware) are placed
on a table of height 0.8m. The x − y coordinates of the two micro-
phones are (0.15,−0.42)m and (0.23, 0.42)m (the table center is
the origin of the coordinate system). The speakers sit approximately
35cm behind each microphone. In order to allow for SIR compu-
tation, each speaker is recorded individually and the recordings are
“merged” (i.e., added) accordingly with the four desired levels of
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overlap. The sampling rate is 16kHz, with a frame-length and frame-
shift of 8192 and 2048 samples, respectively. Each speaker talks for
10 seconds. The least-squares algorithm parameters are p = 0.005
and δ = 3dB.

The frequency-domain data is separated using the FastICA algo-
rithm of [11]. The algorithms are evaluated in terms of the SIRs of
the separated signals. In total, 6 algorithms are evaluated: the two
depermutation schemes without least-squares post-processing, and
the least-squares scheme (under bothY = WX+U andX = HS+V
models) with two initial conditions each (the initial conditions cor-
respond to the two depermutation schemes). The SIRs of the 6 al-
gorithms are compared to those that would be yielded by the ANC
under the idealistic assumption that the separation filters are adapted
with one source being on at a time. The separation filters obtained
in the 0% overlap case with perfect knowledge of the on-times of
the sources are used to measure the ANC SIR. It is important to un-
derstand that the ANC solution is not realizable in practice since it
requires each source to be on one-at-a-time and exact knowledge of
the various on-times.

ICA−CL ICA−MM ICA−CL−LS−W ICA−MM−LS−W ICA−CL−LS−H ICA−MM−LS−H
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Fig. 1. Output SIRs: simulated data (a), real data (b).
The resulting SIRs are found in Fig. 1, with the following no-

tation: “ICA-CL” (the scheme of [9]), “ICA-MM” (proposed de-
permutation scheme), “ICA-CL-LS-W” (ICA-CL with least-squares

post-processing under the Y = WX + U model), “ICA-MM-LS-
W” (ICA-MM with least-squares post-processing under the Y =
WX+Umodel), “ICA-CL-LS-H” (ICA-CL with least-squares post-
processing under the X = HS+Vmodel), “ICA-MM-LS-H” (ICA-
MM with least-squares post-processing under the X = HS + V
model).

From the figure, it is evident that the proposed depermutation
scheme provides greater signal separation than the clustering tech-
nique in all cases. This is attributed to the fact that the MM scheme
is less likely to erroneously swap the two Fourier coefficients. More-
over, the least-squares post-processing provides a tremendous boost
in the output SIRs, with the improvement increasing as the level
of overlap decreases. As the level of overlap decreases, the least-
squares scheme has more time to learn the constrained values of the
separation filters. Since in the real recordings the speakers talk for
10 sec, the ANC solution is attained even for the 50% overlap case.

7. CONCLUSION

This paper has presented a formulation of convolutive BSS tailored
to the nature of the teleconferencing environment. A novel deper-
mutation scheme and a least-squares post-processing method were
developed. Experiments with simulated and real data demonstrated
the potential of the proposed schemes to provide SIRs at or near that
of the ANC solution obtained under idealistic assumptions.
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