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ABSTRACT

It has recently been shown that the use of the time-varying nature of
speech signals allows us to achieve high quality speech dereverber-
ation based on multi-channel linear prediction (MCLP). However,
this approach requires a huge computing cost for calculating large
covariance matrices in the time domain. In addition, we face the im-
portant problem of how to combine the speech dereverberation ef-
ficiently with many other useful speech enhancement techniques in
the short time Fourier transform (STFT) domain. As the first step to
overcoming these problems, this paper presents methods for imple-
menting MCLP based speech dereverberation that allow it to work in
the STFT domain with much less computing cost. The effectiveness
of the present methods is confirmed by experiments in terms of the
recovered signal quality and the computing time.

Index Terms— Dereverberation, Likelihood maximization, Short
time Fourier transform, probabilistic speech model, Inverse filtering

1. INTRODUCTION

Speech signals captured in an enclosed space such as a conference
room will inevitably contain reverberant components because of re-
flections from the walls, the floor or the ceiling. These reverberant
components have a detrimental effect on the quality of the signal
and often seriously degrade many applications including automatic
speech recognition.

Inverse filtering is a technique that has been studied to mitigate
the reverberation problem. It cancels out the reverberation by invert-
ing the room impulse response (RIR), which can be considered an
aggregate of all the reflections with corresponding delays [1, 2]. In
relation to this approach, the use of the time-varying characteristics
of short time speech segments has recently been shown to be very
important for blindly estimating a dereverberation filter that sup-
presses reverberation [3, 4]. This has led to a probabilistic model
based formulation of multi-channel linear prediction (MCLP), where
the objective is to design a filter (as part of an overall probabilis-
tic model) that would turn reverberant speech into something that
is probabilistically more like clean speech [4]. Experiments showed
that this new approach allows us to achieve high quality speech dere-
verberation based only on a few seconds of observation.

Although important mechanisms for effective speech derever-
beration have been presented as described above, fundamental prob-
lems remain that preclude their use for real applications. One prob-
lem is that it is not easy to combine these mechanisms in an efficient
manner with many useful speech enhancement techniques, such as
Wiener filtering and frequency domain blind source separation, in
the short time Fourier transform (STFT) domain. This is because the
MCLP based dereverberation methods that have been proposed can
work only in the time domain. On the other hand, we need to calcu-

late very large covariance matrices on the observed signals in order
to exploit the time-varying nature of speech signals in an optimal
way, but this will inevitably and prohibitively increase the comput-
ing cost of the dereverberation process.

As the first step to overcoming the above problems, we present
new methods for implementing MCLP based dereverberation so that
it can function in the STFT domain with much less computing cost.
One important issue for this implementation involves finding a way
to calculate the convolution with a long prediction filter precisely
using the STFTs. We describe two different approaches to this prob-
lem and present two corresponding dereverberation methods, which
we refer to as the method with window effect reduction (MWER)
and the method with window effect compensation (MWEC). First,
we show that the convolution in the time domain can be calculated
approximately as convolutions in individual frequency bins in the
STFT domain. With this approximation, MWER efficiently esti-
mates the dereverberation filter based on the covariance matrices
calculated separately in individual frequency bins. By contrast, with
MWEC, we present a method to compensate precisely for the ap-
proximation errors found with MWER, and introduce an efficient
conjugate gradient optimization scheme into the dereverberation fil-
ter estimation so that it does not require the calculation of the covari-
ance matrix.

It may be important to note that STFT can also be viewed as a
set of subband filters [5], and convolution is implemented in each
subband separately with this interpretation. Therefore, the derever-
beration methods described in this paper can also be implemented
using a subband processing technique without mojor modifications.
An advantage of our approach in this paper is that the resultant terms
are certain to be STFTs of the corresponding time-domain signal,
and thus it is easy to combine our approach directly to the other sig-
nal processing techniques that work in the STFT domain.

In the remainder of this paper, section 2 overviews MCLP based
dereverberation in the time domain. Section 3 describes the two
methods for dereverberation in the STFT domain. Sections 4 and 5,
respectively, provide experimental results and concluding remarks.

2. DEREVERBERATION IN TIME DOMAIN

Suppose that a single speech source is captured by two microphones.
Let st and x

(l)
t be the digitized sequences of the source signal and

the observed signal, respectively, where t and l are the time and mi-
crophone indices, respectively. With MCLP, the room transfer func-
tions in different channels are assumed to have no common zeros.
Furthermore, we assume1 that the microphone closest to the source
is given in advance as l = 1 with the first tap of the RIR for l = 1

1These assumptions can be easily mitigated in practical applications, and
the discussion here can be easily extended to more than two microphones.
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being 1. Then, the relationship between the source and the observed
signals can be written in MCLP as [6]

x
(1)
t =

2X
l=1

KX
τ=1

c(l)
τ x

(l)
t−τ + st, (1)

where c
(l)
t is an MCLP prediction coefficient. In (1), the current

observed signal, x
(1)
t , is predicted by sequences of past observed

signals, and the source st is taken as the residual signal. Note that
[1 − c̄(1) 0 − c̄(2)] where c̄(l) = [c

(l)
1 c

(l)
2 . . . c

(l)
K ] can be viewed

as an inverse filter that satisfies st = x
(1)
t −Pl

P
τ c

(l)
τ x

(l)
t−τ .

We need to introduce a certain optimization criterion to deter-
mine the prediction coefficients c̄(l) for the dereverberation. With
the probabilistic model formulation [4], a likelihood function based
on a probabilistic speech model is introduced as this criterion. A
time-varying Gaussian source model has been shown to be effective
as this model. Its probability density function (pdf) is defined as

ps(s̄t) = N (s̄t; 0, rt), (2)

where s̄t = [st st+1 . . . st+N−1]
T is a vector representing a

short time frame st of length N , and is assumed to be a stationary
Gaussian process with a zero mean and the autocorrelation function
rt = E(s̄ts̄

T
t ) within the short time frame, and rt is assumed to

vary over the short time frames. Then, the dereverberation is defined
as the problem of finding a set of parameters, θ = {c̄, r} where
r = {rt} for all t, that maximizes the following likelihood function.

L(θ) =
X

t

log px(x̄
(1)
t |{x̄(l)

t−τ}τ>1,l=1,2; θ) (3)

=
X

t

logN
 

x̄
(1)
t ;

2X
l=1

KX
τ=1

c(l)
τ x̄

(l)
t−τ , rt

!
, (4)

where x̄
(l)
t is a short time segment of x(l)

t , px(·) is the posteriori pdf
of x̄(l)

t given the past observed signals. (3) is easily rewritten as (4)
according to (1) and (2).

Effective dereverberation algorithms have been derived based on
(4) with further parameterization of rt [4]. However, all such algo-
rithms incur huge computing cost to calculate the covariance matrix
d(r) below and its inverse d−1(r),

d(r) =
X

t

xT
t−1r

−1
t xt−1, (5)

where xt−1 = [x̄
(1)
t−1 x̄

(1)
t−2 . . . x̄

(1)
t−K x̄

(2)
t−1 x̄

(2)
t−2 . . . x̄

(2)
t−K ]. This

is because the prediction filter should be long and, in theory, at least
as long as the room impulse response.

3. DEREVERBERATION IN STFT DOMAIN

We describe two dereverberation methods in the STFT domain, which
we refer to as MWER and MWEC, in the following subsections.

3.1. Method with window effect reduction (MWER)
Suppose that y

(l)
t is a signal obtained by convolving an observed

signal x(l)
t with a prediction filter c(l)

t . Then, y
(l)
t within a short time

analysis window can be represented in the Z-domain as

WN (Y (l)(Z)Zt) = WN (C(l)(Z)X(l)(Z)Zt). (6)

where Y (l)(Z) = C(l)(Z)X(l)(Z) and WN (·) is a window func-
tion of length N . WN (A(Z)) extracts terms from Z0 to Z−N+1 in
A(Z), modifies their coefficients in proportion to the window shape,
and discards all other terms outside the window. Zt is a time shift

operator that shifts the short time frame starting at time t into the
window function. Now, let us representAt,M (Z) = W R

M (A(Z)Zt)
where W R

M (·) is a rectangular window of length M . Obviously,
A(Z) =

P
τ AτM,M (Z)Z−τM . Then, (6) can be rewritten as

WN (Y
(l)

t,N (Z)) = WN (

KRX
τ=0

C
(l)
τM,M (Z)Z−τMX(l)(Z)Zt),

=

KRX
τ=0

WN (C
(l)
τM,M (Z)X(l)(Z)Zt−τM ),

=

KRX
τ=0

WN (C
(l)
τM,M (Z)X

(l)
t−M+1−τM,M+N−1(Z)ZM−1), (7)

whereKR ≈ K/M . The argument of the window function in (7) is
a convolution of short time segments ofX(l)(Z) andC(l)(Z). Now,
we introduce an approximation according to a common practice in
short time speech analysis, namely, that the convolution of a short
time segment with a filter can be approximated by the product of
the STFTs of the signal and the filter in the STFT domain when the
filter is much shorter than the analysis window. We can use this
approximation in the above equation whenM is much smaller than
N , and (7) can be rewritten on the unit circle as

WN (Y
(l)

t,N (Z)) ≈
KRX
τ=0

W R
N (C

(l)
τM,M (Z))WN (X

(l)
t−τM,N (Z)). (8)

With discrete STFT representation, it becomes

Y (l)
n ≈

KRX
τ=0

diag(X(l)
n−τ )C(l)

τ , (9)

where n and τ are frame indices, Y (l)
n , C(l)

n , and X
(l)
n , respectively,

are vectors that contain frequency bins of the STFTs correspond-
ing to windowed Y (l)(Z), C(l)(Z), and X(l)(Z), and diag(X) is
a diagonal matrix that contains the elements of X as its diagonal
components. As a consequence, the convolution in the time domain
is represented as those of STFTs in individual frequency bins. Be-
cause M is equal to the frame shift in (8), the frame shift needs to
be sufficiently small compared with the window length N with this
approximation.

By applying STFT to both sides of (1) using (9) and introducing
a certain delay d to the past observed signals on the right hand side,
we obtain

X(1)
n =

2X
l=1

KRX
τ=d

diag(X(l)
n−τ )C(l)

τ + S̃n. (10)

Here, the delay d was introduced to prevent the STFTs of the cur-
rent and past observed signals from sharing the same signal in the
time domain. Because of this delay, MCLP cannot predict early re-
flections of reverberation included within a short time frame [7], and
thus they remain in the residue. To clarify this, we denote the residue
of MCLP as S̃n in (10). Note that early reflections remaining after
dereverberation can be appropriately handled in many signal pro-
cessing techniques based on the STFT representation [7].

The likelihood function can be defined in a similar way to the
time domain algorithm. We again adopt the time-varying Gaussian
process as the speech model, and define it as

p(S̃n) = N (S̃n; 0, Ψn), (11)

where Ψn = E(S̃nS̃∗Tn ) is the covariance matrix of S̃n with ’∗’
representing a complex conjugate, and we assume Ψn is diagonal
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for the sake of simplicity. Then, we can rewrite the pdf of the speech
separately in each frequency bin as p(S̃m,n) = N (S̃m,n; 0, ψ2

m,n),
where S̃m,n is them-th bin of S̃n and ψ2

m,n = E(S̃m,nS̃∗m,n) is the
variance of the frequency binm at frame n. Let θ = {C̄m, ψ̄2

m} be
an estimation parameter set composed of a vector of the prediction
coefficients, C̄m = [C

(1)
m,d C

(1)
m,d+1 . . . C

(1)
m,KR

C
(2)
m,d C

(2)
m,d+1 . . .

C
(2)
m,KR

]T , and a time series of the source variances, ψ̄2
m = {ψ2

m,n},
for all n at frequency bin m. Then, the likelihood function in each
bin can be defined as

Lm(θ) =
X

n

log p(X(l)
m,n|Xm,n−d; θ), (12)

=
X

n

logN (X(l)
m,n;Xm,n−dC̄m, ψ2

m,n),

whereXm,n−d = [X
(1)
m,n−d X

(2)
m,n−d] andX

(l)
m,n−d = [X

(l)
m,n−d

X
(l)
m,n−d−1 . . . X

(l)
m,n−KR

]. The algorithm for maximizing (12) can
be derived in a similar way to that of the time domain MCLP with a
time-varying white Gaussian source model [4]. The iterative maxi-
mization algorithm is summarized as follows.

1. Set initial values as C
(l)
m,n = 0 and S̃n = X

(1)
n .

2. Repeat the following until convergence
ψ̂2

m,n= S̃m,nS̃∗m,n → ψ2
m,n,

ˆ̄Cm= (
P

n

X∗T
m,n−dXm,n−d

ψ2
m,n

)−1P
n

X∗T
m,n−dX

(1)
m,n

ψ2
m,n

→ C̄m,

ˆ̃Sm,n = X
(1)
m,n −Xm,n−dC̄m → S̃m,n.

We still need to calculate the covariance matrix similar to (5) above,
however, we can greatly reduce the size of the matrix and thus the
computing cost compared with those of the time domain algorithm.

It is important to note that, although MWER was designed so
that the effect of the circular convolution can be reduced, such effect
is not explicitly avoided in the optimization process, and thus may
remain in the resultant prediction filter. This is also the case with
MWEC described in the next subsection. This means that the STFT
representation contains a certain redundancy for the prediction fil-
ter parameter space compared with the time-domain representation.
Because it is not easy to analyze theoretically how advantageously
or disadvantageously such a redundancy may function with actual
dereverberation, we investigate this experimentally in section 4.

3.2. Method with window effect compensation (MWEC)
By taking the window effect carefully into account, we can more
precisely calculate (7) based on the STFT representation, without
introducing the approximation (8). First we set N = M , which
allows us to rewrite (7) in a rather simple form as

WN (Y
(l)

t,N (Z)) = WN (

KCX
τ=0

Fτ (Z)), where

Fτ (Z) = C
(l)
τN,N (Z)X

(l)
t−τN,N (Z) + C

(l)
τN,N (Z)X

(l)

t−(τ+1)N,N (Z)ZN ,

where KC ≈ K/N . Fτ (Z) is a sum of convolutions between short
time segments of the same length N , and thus can be calculated as
the product of their STFTs obtained by discrete Fourier transforma-
tion (DFT) with 2N points. ZN functions as a time shift operator
with the order N . Because the segment length is N , we can calcu-
late the time shift appropriately by using short time analysis with 2N
DFT points. On the other hand, it is known that the window function

can be represented as a circular convolution using the STFT repre-
sentation. Consequently, the above equation can be rewritten using
the STFT representation as

WNY (l)
n = WN

KCX
τ=0

diag(X̃(l)
m−τ )C(l)

τ ,

X̃(l)
n = X(l)

n + diag(G)X
(l)
n−1.

where Y
(l)

n , C(l)
n , andX

(l)
n are STFTs corresponding to Y

(l)
nN,N (Z),

C
(l)
nN,N (Z), and X

(l)
nN,N (Z), respectively, calculated with a rectan-

gular window of length N and DFT points of Np (≥ 2N), G is the
circular time shift operator defined as [1 ej2πN/Np ej4πN/Np . . .

ej2πN(Np−1)/Np ]T , and WN is an Hermitian Toeplitz matrix that
has an STFT of the window function in its first column.

Similar to (10), we can define MCLP with this approach as

WNX(1)
n = WN

2X
l=1

KCX
τ=1

diag(X̃(l)
n−τ )C(l)

τ + S̃n,

and we adopt the same source model as (11). The likelihood func-
tion, however, cannot be evaluated separately in each frequency bin
because the window effect over frequency bins is taken into account
with this approach. Let θ = {C̄, ψ2

n} be the estimation parameter
set, where C̄ = [(C̄(1))T (C̄(2))T ]T with C̄(l) = [(C̄

(l)
1 )T (C̄

(l)
2 )T

. . . (C̄
(l)
KC

)T ]T , and let Xn = [X
(1)
n X

(2)
n ] where X

(l)
n = [diag(X̃(l)

n )

diag(X̃(l)
n−1) . . . diag(X̃(l)

n−KC+1)], then the likelihood function is
defined as

L(θ) =
X

n

log p(WNX(1)
n |Xn−1; θ),

=
X

n

logN (WNX(1)
n ;WN Xn−1C̄, Ψn). (13)

Although a repetitive maximization algorithm similar to MWER can
also be derived for MWEC, it still requires a huge computing cost to
calculate the covariance matrix without disregarding the window ef-
fect. Instead, we can maximize the above function efficiently based
on the conjugate gradient method because it does not require us to
calculate the covariance matrix. The resultant algorithm is summa-
rized as follows.
1. Set initial values as C

(l)
m,n = 0 and S̃n = WNX

(1)
n .

2. Repeat the following until convergence

(a) ψ̂2
m,n = S̃m,nS̃∗m,n → ψ2

m,n

(b) r =
P

n X
∗T
n−1W

∗T
N Ψ−1

n S̃n

(c) p = r

(d) Repeat the following until convergence
i. qn = WN Xn−1p,
ii. α = r∗T r/

P
n q∗Tn Ψ−1qn,

iii. ˆ̄C = C̄ + αp → C̄,
iv. r′ = r − α

P
n X

∗T
n−1W

∗T
N Ψ−1

n qn,
v. β = (r′)∗T r′/(r∗T r),
vi. p = r′ + βp, r = r′

(e) ˆ̃Sn = WN(X
(1)
n − Xn−1C̄) → S̃n

With the above procedure, we can calculate qn efficiently at step
2(d)i because C̄ in each frequency bin is very short, and we can also
calculate the remaining procedure efficiently because qn is as small
as S̃n, namely much smaller than the covariance matrix.

87



1 10 100
2

2.5

3

3.5

4

4.5

RTF (Elapsed time/observation time)

C
D

 (d
B

)

MWER
MWEC
Obs.
Baseline

1 10 100
2

2.5

3

3.5

4

4.5

RTF (Elapsed time/observation time)

J=5 J=20

J=50
J=200

J=1000 J=6000

M=256

M=128

M=64 M=32 M=16 M=8

Fig. 1. Average cepstral distortions (CD) of the signals dereverber-
ated by MWER and MWEC, average CDs of the observed signals
(Obs.) and average CDs of the signals dereverberated by the time-
domain algorithm (Baseline) when using u1 (left panel) and u5 (right
panel) and controlling the real time factors (RTF).

4. PRELIMINARY EXPERIMENT

To test the effectiveness of the present methods, we prepared two ut-
terance sets, u1 and u5, in which each utterance is composed of one
word and five word sequences, respectively. Each set contains two
utterances extracted from the ATR word utterance database, and spo-
ken by a male and a female (MAU and FKM), respectively. The ob-
served signals were synthesized by convolving each utterance with
2-ch RIRs measured in a reverberant room with a reverberation time
(RT60) of 0.5 sec. Dereverberation was performed for each utter-
ance, and the performance was evaluated in terms of the cepstral dis-
tortion (CD) of the recovered signals and the real time factor (RTF)
of the dereverberation processing. A CD in dB is defined as

CD = (10/ ln 10)

vuut2

DX
k=0

(ĉk − ck)2,

where ĉk and ck are, respectively, cepstral coefficients of the speech
signal being evaluated and the original clean speech signal, and we
adopted D = 12. Distortions in the energy time pattern and spec-
tral envelope were evaluated with this measure. The RTF is defined
as the ratio of the computing time required for the dereverberation
processing to the time duration of the observed signal. The present
methods were both implemented with MATLAB, and the computing
time was measured by a MATLAB interpreter on a linux computer.
The computing time was controlled by changing the frame shift as
M = 256, 128, 64, 32, 16, and 8 taps for MWER, and by increas-
ing the iteration number of step 2(d) in the optimization algorithm
as J = 5, 20, 50, 200, 1000, and 6000 for MWEC. The sampling
rate and the STFT frame size were set at 8 kHz and N = 256, re-
spectively, and the prediction filter length was set atKR ≈ 3000/M
for MWER and KC = 12 for MWEC. The number of DFT points
was set at 256 for MWER and 512 for MWEC. No a priori training
was employed for the speech models in this experiment. The vari-
ances of the source models, ψ2

m,n, were estimated from the initial
source estimates, and not subsequently updated, that is, the iteration
number of step 2 in MWER and MWEC was set at 1.

Figure 1 plots the CDs of the signals dereverberated by MWER
and MWEC, the CDs of the observed signals, and the CDs of the
signals dereverberated by the time-domain MCLP using a likelihood
function corresponding to that of MWEC (Baseline). The figure
shows that both present methods are able to reduce the CDs more
effectively as the RTF becomes larger, and they converge to almost
the same CDs. Interestingly, they are even smaller than Baseline,
especially when the observed signal is short. We guess that the re-
dundancy of the prediction filter parameter space with MWER and
MWEC might function advantageously to make the resultant signal
more like clean speech according to the probabilistic speech model.
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Fig. 2. Spectrograms of clean (top left), reverberated (top right) sig-
nals, and signals dereverberated by MWER with M = 64 (bottom
left), and by MWEC with J = 1000 (bottom right) using u5.

Spectrograms of speech signals obtained before and after dereverber-
ation shown in Fig. 2 indicate that the time and frequency structure
of the signal was clearly recovered by MWER and MWEC. When
we compared MWER and MWEC, the former was clearly superior
in terms of RTFs. In particular, MWER was able to attain almost the
best CDs with a frame shift ofM = 64 that corresponds to an RTF
of about 3. By contrast, MWEC required a much higher computing
cost to realize its best performance although it demonstrated a cer-
tain dereverberation effect even with a low computing cost. We need
to develop a more efficient optimization method for MWEC than the
conjugate gradient method.

5. CONCLUSION

We presented two methods for implementing MCLP based speech
dereverberation in the STFT domain, which we refer to as the method
with window effect reduction (MWER) and the method with window
effect compensation (MWEC). Preliminary experiments revealed that,
in terms of the cepstral distortion of the dereverberated signals, both
methods were comparable to even better than MCLP based derever-
beration, which operates in the time domain. In addition, MWER
was much better in terms of computing cost. MWER was able to
achieve high quality speech dereverberation with a real time factor
of about 3. Future work will include a comprehensive evaluation of
the present methods in comparison with the time-domain algorithm.
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