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ABSTRACT

The generalized sidelobe canceller by Griffith and Jim is a robust
beamforming method to enhance a desired (speech) signal in the
presence of stationary noise. Its performance depends to a high de-
gree on the construction of the blocking matrix which produces noise
reference signals for the subsequent adaptive interference canceller.
Especially in reverberated environments the beamformer may suffer
from signal leakage and reduced noise suppression. In this paper a
new blocking matrix is proposed. It is based on a generalized eigen-
value problem whose solution provides an indirect estimation of the
transfer functions from the source to the sensors. The quality of the
new generalized eigenvector blocking matrix is studied in simulated
rooms with different reverberation times and is compared to alterna-
tives proposed in the literature.

Index Terms— Speech enhancement, array signal processing

1. INTRODUCTION

The enhancement of a desired speech signal in the presence of sta-
tionary noise using an array of microphones has been studied for
several years. A very famous and robust beamforming method is the
generalized sidelobe canceller (GSC) [1] which consists of three sig-
nal processing units, see Fig. 1. While the fixed beamformer (FB) is
designed to deliver a first estimate of the desired speech signal, the
blocking matrix (BM) is supposed to block the speech signal parts
in the microphone signals. The noise references at its output drive
a multichannel adaptive interference canceller (AIC) whose coeffi-
cients are adapted to suppress the remaining noise in the FB output.
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Fig. 1. GSC structure

In [1] the sound propagation from source to sensors is charac-
terized by pure delays. Hence, noise reference signals can be ob-
tained by pairwise subtraction of time-aligned microphone signals.
The alignment requires knowledge of the direction of arrival (DoA)
of the speech signal and of the array geometry. However, in real
acoustic environments multipath propagation from the source to the
sensors causes leakage of speech signal components into the noise
references, resulting in a reduced noise suppression and distortion of
the desired signal.
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Hoshuyama et al. proposed an adaptive blocking matrix (ABM),
where the optimization criterion for adaptation is to achieve noise
reference signals orthogonal to the FB output signal. They further-
more introduced constraints on the ABM filter coefficients to im-
prove the robustness against estimation errors of the DoA [2]. Her-
bordt and Kellerman developed an efficient frequency domain real-
ization for the GSC with ABM [3]. They showed that for optimal
noise reference signals the adaptation has to be carried out only in
periods of absence of noise [4]. In situations where this condition
does not hold, only suboptimal solutions can be achieved.

In order to cope with the problem of stationary noise Gannot
et al. [5] introduced the transfer function ratios blocking matrix
(TFRBM). The ratios of the transfer functions (TF) from the speaker
to the mirophones are estimated with the least squares method in
periods when the speech signal is present.

Here, we propose a new blocking matrix which is based on the
idea of generating a speech reference signal similar to [2]. But op-
posite to [2] we first use statistically optimal beamformer filter co-
efficients resulting from maximizing the output signal-to-noise ra-
tio. Secondly the orthogonal projection for constructing the blocking
matrix is done directly without LMS adaptation. The optimal filter
coefficients are computed iteratively by solving a generalized eigen-
value problem (GEVP). With the proposed method a reduced signal
distortion and a higher noise reduction compared to the TFRBM can
be achieved.

2. GENERALIZED EIGENVECTOR BEAMFORMING

Consider an array of M microphones which is located in a rever-
berant enclosure. Each time-discrete microphone signal xi(l), (i =
1, ..., M), where l denotes the discrete-time index, is assumed to
consist of two components: a signal component si(l) which results
from the convolution of the desired (speech) source signal s0(l) with
the room impulse response hi(l) from the source position to the i-th
microphone, and a stationary noise term ni(l):

xi(l) = si(l) + ni(l) = s0(l) ∗ hi(l) + ni(l). (1)

The discrete Fourier transforms (DFTs) of the time signals are de-
noted by corresponding capital letters such as Xi(k), where k means
the frequency bin. For a block by block processing the microphone
signals are windowed by a discrete window function g(l) of a finite
length L:

xi (l, m) := xi(l)g(l− (m− 1)B), (2)
where B denotes the advance between successive blocks and m is
the block index. The short time discrete Fourier transforms (STDFTs)
of xi(l), denoted by Xi (k, m), are arranged in a vector:

X (k, m) := (X1 (k, m) , ..., XM (k, m))T , (3)
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where (·)T denotes transposition.

2.1. Maximum-SNR-criterion

For the blocking matrix design we use information about the transfer
functions from the instationary signal source to the microphones.
This information can be obtained from the optimal transfer functions
FSNR (k) of a generalized eigenvector beamformer [6] which results
from the maximum-SNR-criterion

FSNR (k, m) := argmax
F(k,m)

SNR (k, m) , (4)

with the frequency dependent SNR for the m-th block

SNR (k, m) :=
F

H (k, m)ΦSS (k, m)F (k, m)

FH (k, m)ΦNN (k, m)F (k, m)
. (5)

The short time cross power spectral density matrices (PSDs) of speech
and noise are given by

ΦSS (k, m) := E
h
S (k, m)SH (k, m)

i
(6)

ΦNN (k, m) := E
h
N (k, m)NH (k, m)

i
= ΦNN (k) ,(7)

where (·)H denotes the conjugated transposition. The expectation
is conducted over all realizations of the signals in the m-th block.
The dependence of ΦSS (k, m) on the block index m is obvious as
speech signals are instationary. On the contrary the noise is here as-
sumed to be stationary so that the block index for the corresponding
PSD can be dropped. We further assume that the speech and noise
are uncorrelated and that each of the signals has zero mean. This
allows to split the PSD of the microphone signals into two parts

ΦXX (k, m) = ΦSS (k, m) + ΦNN (k) . (8)

In that case the solution of (4) is equivalent to the eigenvector be-
longing to the largest eigenvalue of the GEVP [6]

ΦXX (k, m)F (k, m) = λ (k, m)ΦNN (k)F (k, m) . (9)

With the assumption that ΦNN (k) is not singular the GEVP can be
transformed to the special eigenvalue problem (SEVP)

Φ
−1

NN
(k)ΦXX (k, m)F (k, m) = λ (k, m)F (k, m) . (10)

The TFs from the desired source to the sensors are assumed to change
slowly in time. Then for large window length L, the approximation

X (k, m) ≈ S0 (k, m)H (k) + N (k, m) (11)

results from (1). It follows from above that the PSD of the micro-
phone signals can be rewritten as

ΦXX (k, m) ≈ ΦS0S0
(k, m)H (k)HH (k) + ΦNN (k) . (12)

In the case of ΦS0S0
(k, m) �= 0 the SEVP (10) can be reformulated

as follows

Φ
−1

NN
(k)H (k)HH (k)F (k, m) =

λ (k, m)− 1

ΦS0S0
(k, m)

F (k, m) .

(13)
As the rank of the positive semidefinite matrix

Φ
−1

NN
(k)H (k)HH (k) is one there is obviously only one eigen-

vector belonging to an eigenvalue greater than zero. This eigenvector
which represents the optimal transfer functions FSNR (k) is indepen-
dent of the block number m:

FSNR (k) = ζ (k)Φ−1

NN
(k)H (k) , (14)

where ζ (k) is an arbitrary complex constant. This can be easily
verified by plugging (14) into (13).

2.2. Generalized Eigenvector Blocking Matrix (GEVBM)

The new GEVBM uses the optimal transfer functions FSNR (k) to
construct a projection into the orthogonal complement of H (k). It
is, as previously mentioned, intended to produce noise reference sig-
nals orthogonal to a speech reference. The DFT of this reference
signal is created as

YSNR(k) := F
H
SNR(k)X(k). (15)

With the projection vector P(k) the noise references

U(k) := X(k)−P(k)YSNR(k) (16)

should approximately meet the following orthogonality condition for
the STDFTs of the noise and speech reference signals

E [U(k, m)Y ∗SNR(k, m)]
!
≈ 0, (17)

where (·)∗ denotes complex conjugation, resulting in

P (k) :=
ΦNN (k)FSNR (k)

FH

SNR (k)ΦNN (k)FSNR (k)
. (18)

when using (9). Taking the noise signals (16) as output of the block-
ing matrix

B
H (k) := IM −P (k)FH

SNR (k) , (19)

where IM is the identity matrix of dimension M , the novel structure
of the blocking matrix is given with (14) and (18) as

B
H (k) := IM −

H (k)HH (k)Φ−1

NN
(k)

HH (k)Φ−1

NN
(k)H (k)

. (20)

It can be easily veryfied, that the noise reference signals

U (k) =B
H (k)X (k)

=

„
IM −

H (k)HH (k)Φ−1

NN
(k)

HH (k)Φ−1

NN
(k)H (k)

«
N (k) (21)

do not contain any instationary speech signal components.
Note, because of the indirect estimation of the TFs in (14) high

flexibility in constructing a BM is given, e.g. TFRBM [5] could be
easily realized.

2.3. Estimation of the cross PSD matrices

For the determination of FSNR (k) the PSD matrices appearing in
the GEVP (9) are required. The estimation of ΦNN (k) can be per-
formed in periods when only noise is present in the microphone sig-
nals. Such periods have to be indicated by a voice activity detection
(VAD). One possibility is then to average the instantaneous estimates
of KN frames such as

Φ̂NN (k) :=
1

KN

KNX
m=1

“
X (k, m)XH (k, m)

”
|X=N. (22)

Instead of estimating ΦXX (k, m) for each block m it is sufficient
to estimate an averaged cross PSD matrix

Φ̂XX (k) :=
1

KX

KXX
m=1

X (k, m)XH (k, m) (23)

from the observation of KX frames in which the microphone signals
contain both speech and noise signal parts. The reason for that is
that for sufficient large KX the matrix Φ̂XX (k) assumes the same
form as ΦXX (k, m) in (12) except for the constant ΦS0S0

(k, m).
But obviously, this constant has no effect on the eigenvectors of the
GEVP (9).
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3. SIMULATION RESULTS

For the experiments a linear array of M = 5 microphones with inter-
element distance of d = 0.04 m placed in a simulated reverberant
enclosure of the size (6 m) x (5 m) x (3 m) was used. The noise and
speech sources were placed within the enclosure according to Fig. 2
with angles of θs = 45◦ for the speech and θn = 20◦ for the di-
rectional noise, repectively. We used 10 TIMIT sentences as speech
source, each of a length of about 4 seconds. The noise source signal
was a recording of lowpass fan noise.

3m

5m

6m

0.5m

0.8m

0.7m

4cm

Speech

Noise

θn

θs

Fig. 2. Simulation set-up.

The speech and noise signal components at the microphones
were created using the image method by Allen and Berkley and
summed with an SNR of 5 dB. Furthermore white gaussian noise
was added to each microphone with an SNR of 35 dB. The sampling
rate f = 1/T was chosen to 12 kHz.

A delay-and-sum beamformer (DSB) was used as a fixed beam-
former. According to the set-up, the delay for the alignment of the
speech components was one sampling period T and could therefore
be realized perfectly. The multichannel noise cancellation in the AIC
was implemented using the normalized least mean squares method
with a filter length of 1024 taps.

Four different blocking matrices were compared. For the block-
ing matrix by Griffith and Jim (GJBM) the microphone signals were
aligned the same way as in the DSB. The noise reference signals
were computed by subtracting from one microphone signal the mean
of the M − 1 other aligned microphone signals.

For the estimation of the TFRs in the TFRBM according to [5]
the microphone signals were windowed by a Hamming window with
a length of L = 512 samples and no overlap between successive
windows. The estimation time corresponded to the length of each
TIMIT sentence. The estimated transfer functions were transformed
to the time domain. As the resulting impulse responses were as-
sumed to be noncausal and of finite length, they were cut off to the
intervall [−127, 128].

For the GEVBM, first the noise cross PSD matrix was estimated
according to (22) in a period of 8 sec. The window length was L =
512 samples with an overlap of L− B = L/2. The averaged cross
PSD matrix of the microphone signals was computed according to
(23) when the speech and noise parts were both present. Then the
SEVP (10) was solved using the Mises vector iteration applying KX

iterations. The resulting eigenvector was used to form the transfer
functions of the GEVBM for each frequency bin as shown in (19).
Finally, the FIR filter coefficients were determined the way as in the
TFRBM. The filtering in the GEVBM and TFRBM was realized in

the frequency domain using the overlap save method.
The adaptive blocking matrix was incorporated into the simula-

tions to get a performance upper bound. In the case of absence of
noise during the estimation of the ABM filter coefficients a perfect
FIR result is achieved. The ABM [2] was realized in the frequency
domain without constraints on the filter coefficients for improved ro-
bustness using filter lengths of 256 samples.

For the comparison of the blocking matrices all components of
the GSC were analyzed in steady state. That was nearly achieved
by choosing a very high number of iterations for the AIC and the
ABM. Different measures concerning the noise reduction and speech
quality are presented in the following. First of all the SNR gain from
the input to the output of the whole GSC structure was computed as
a function of the reverberation time T60.
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Fig. 3. SNR gain for directional noise.

As can be seen in Fig. 3 the the best SNR improvents for all
reverberation times were achieved with the ABM. While the SNR
gains for the GEVBM are comparable to those of the ABM, the
SNR gains of the GJBM are significantly lower compared to ABM
and GEVBM for increased reverberation times. For small values of
T60, the SNR gains are nearly the same, because the assumption of
a simple direct path propagation in the GJBM is then only slightly
violated. It is important to mention that the GJBM would loose in
performance if, instead of exactly one sampling period, a fractional
delay had to be realized by interpolation FIR filters, and if the esti-
mation of the DoA were not perfect.

Unfortunately the SNR gains achieved with the TFRBM are con-
siderably smaller for low reverberation times compared to the other
approaches because of less noise reduction in the lower frequencies.
For large values of T60 the SNR improvements are only slightly
higher than those obtained with the GJBM.

One possibility to assess speech signal distortions is to measure
the power spectral density deviation between the speech signal com-
ponents at the beamformer output and a reference signal. Here, we
take the ABM-GSC output as the reference as we assume it to pro-
duce the best results that can be achieved using FIR filters of a given
length. For the k-th frequency bin the PSD devation is defined by

δPSD (k) =
ΦSS (k)

Φ
(ABM)
SS (k)

, (24)

where

ΦSS (k) :=
1

KS

KSX
m=1

|Ys (k, m)|2 (25)

is the average over the instantaneous estimates of the PSD of the
speech signal components ys(l) of the GSC output signal. KS de-
notes the number of windows used for the average. For example,
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Fig. 4 displays the PSD deviation over frequency for the reverbera-
tion time T60 = 100 ms. It is noticeable that for the TFRBM lower
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Fig. 4. Mean PSD deviation of compared blocking matrices for di-
rectional noise (T60 = 100 ms).

frequencies under 500 Hz were highly amplified. This fact was al-
ready mentioned in [7]. While the amplification of those frequencies
was smaller with the GJBM, the GEVBM caused an attenuation of
those frequencies. However, the attenuation was smaller than the
amplification. Furtheron, an amplification of frequencies over 5 kHz
could be observed for all blocking matrix methods.

Taking into account the fact that speech signals have the most
power between 500 Hz and 5 kHz the variance of the PSD deviation
σPSD averaged over all frequencies in this interval was analyzed, see
Fig. 5. A variance of zero means that all frequencies are attenuated
or amplified the same way, causing a simple amplitude change of
the speech signal. A high value for the variance means that differ-
ent frequencies are amplified by different factors resulting in speech
distortions. Here, it can be seen that the variance for the GJBM
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Fig. 5. Mean PSD deviation variance for directional noise.

increases significantly with reverberation time, while the TFRBM
achieves considerably lower values, and the GEVBM even lower
vales than the TFRBM, indicating less speech distortion.

Finally the speech distortion in the GSC output signal is mea-
sured by a perceptual speech quality measure (PSM) [8] in Fig. 6.
PSM has been shown to give comparable objective perceptual qual-
ity evaluation results as the well-known PESQ measure. Here, the
reference was the clean speech output signal of the GSC with opti-
mal blocking matrix (ABM). The PSM values for the novel GEVBM
and the GJBM are similarly high for low reverberation times. How-
ever, for increasing reverberation times the PSM values for GEVBM
are slightly higher than for GJBM. The TFRBM delivers somewhat
inferior results, which can be explained by the fact that the TFRBM
boosts low-frequency signal components. The displayed PSM re-
sults correspond well to our informal listening tests.
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Fig. 6. Perceptual speech quality measure (PSM) of the GSC output
signals using different blocking matrices in the case of directional
noise.

The C/C++ implementation of the GEVBM-GSC for realtime
application in our laboratory comprised a VAD, DoA estimation by
eigenvalue decomposition, the DSB as FB and the multichannel au-
dio input/output management. The computational effort for the whole
system running on an Intel Quad-Core Xeon E5345 / 2.33 GHz pro-
cessor resulted in a realtime factor of 0.3.

4. CONCLUSION

In this paper a new blocking matrix for a GSC beamformer was
presented, which is based on a generalized eigenvalue decomposi-
tion. The simulation results show that, compared to other meth-
ods, a higher noise reduction and smaller desired signal distortion
in the interesting frequency band can be achieved. The performance
is similar to that of the adaptive blocking matrix by Hoshuyama et
al., while, unlike the latter, adaptation can be carried out in the pres-
ence of stationary noise. However, these improvements can only be
achieved with a higher computational effort.
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