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ABSTRACT

Digital music collections often contain different versions and
interpretations of a single musical work. In view of mu-
sic retrieval and browsing applications, one important task,
also referred to as audio synchronization, is to automatically
time-align two given audio recordings of the same underly-
ing piece. In this paper, we present a novel synchronization
procedure, which can compute meaningful audio alignments
even in the presence of structural variations. Such variations
include the omission of repetitions, the insertion of additional
parts (soli, cadenzas), or differences in the number of stan-
zas in popular, folk, or art songs. As one main contribution,
we introduce the concept of path-constrained similarity matri-
ces. This enables us to employ a exible and ef ciently com-
putable partial matching procedure in the optimization step
of our synchronization algorithm. Our overall strategy aims
at aligning preferably long consecutive runs while avoiding
an over-fragmentation of the audio material.

Index Terms— Music, Audio Recording, Alignment,
Similarity Matrix, Partial Match

1. INTRODUCTION

Often, a large number of different versions and interpretations
exist for a single musical work. The task of music synchro-
nization aims at identifying and linking semantically corre-
sponding events which are present in different versions. In
particular, the task of audio synchronization, where the goal
is to time-align two given audio recordings of the same under-
lying piece of music, has attracted a large amount of attention,
see, e. g., [1, 2, 3] and the references therein. Even though re-
cent synchronization algorithms can handle signi cant varia-
tions in tempo, dynamics, and instrumentation, most of them
rely on the assumption that the two versions to be aligned
correspond to each other with respect to their overall global
structure. In real-world scenarios, however, this assumption
is often violated. For a popular song, there may be various
structurally different album, radio, or extended versions as
well as cover versions. In classical music, audio recordings
often show omissions of repetitions (e. g., in sonatas and sym-
phonies) or signi cant differences in parts such as solo caden-
zas of concertos. A further prominent example are recordings

of popular, folk, or art songs. Here, different recordings of
the same underlying song often exhibit a different number of
stanzas.
Most previous approaches to music synchronization pro-

ceed in two steps. First, the two audio recordings to be aligned
are transformed into sequences of (e. g., spectral, chroma,
MFCC) features. Then, the two feature sequences are aligned
using techniques based on dynamic time warping (DTW),
see [2]. In classical DTW, all elements of one sequence are
matched to elements in the other sequence (while respecting
the temporal order). This is problematic when elements in
one sequence do not have suitable counterparts in the other
sequence. In the presence of global structural differences be-
tween the two sequences, this typically leads to misguided
alignments, see Fig. 1a. Also, more exible alignment strate-
gies such as subsequence DTW or partial matching strategies
as used in biological sequence analysis [4] do not properly
account for such structural differences.
In this paper, we propose a novel synchronization proce-

dure, which basically consists of three steps. In the rst step,
we construct a path-constrained similarity matrix, which en-
codes the common structure of the two audio recordings to be
aligned (Sect. 2). In the second step, we compute an optimal
path-constrained alignment using a standard partial matching
procedure based on dynamic programming. Finally, in the
third step, we improve the result by boosting the alignment of
preferably long runs and eliminating the alignment of short
audio fragments (Sect. 3). The main idea of the overall proce-
dure is that constraining possible matches by a semantically
motivated path structure automatically leads to a structurally
meaningful global alignment, see Fig. 1.
In Sect. 4, we report on our experiments demonstrat-

ing the practicability of our algorithm. Further results
and soni cations can be found at http://www-mmdb.iai.
uni-bonn.de/projects/partialSync/. Conclusions
and prospects on future work are given in Sect. 5. Further
references to related work are given in the respective sections.

2. PATH-CONSTRAINED SIMILARITY MATRIX

In this section, we introduce the concept of path-constrained
similarity matrices. We start by reviewing the basic no-
tions while xing the notation. Given two audio record-
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Fig. 1. (a) Similarity matrix Schroma of two different (structurally modi ed) audio recordings of Brahms’ Hungarian Dance
No. 5. The rst recording (vertical axis) has the musical form A1

1B
1
1B1

2C1A1
2B

1
3B1

4D1, whereas the second (horizontal axis)
has the musical form A2

1A
2
2B

2
1B2

2A2
3B

2
3D2. (b) Smoothed similarity matrix Senh. (c) Senh with score-maximizing match. (d)

Path-constrained similarity matrix Spc. (e) Spc with score-maximizing match. (f) Match after cleaning step. The three path
components correctly match A1

1B
1
1B1

2 with A2
2B

2
1B2

2 , A1
2 with A2

3, and B1
4D1 with B2

3D2, respectively.

ings, we transform them into suitable feature sequences V :=
(v1, v2, . . . , vN ) and W := (w1, w2, . . . , wM ), respectively.
In the subsequent discussion, we employ smoothed normal-
ized chroma features with a temporal resolution of 1 Hz as
described in [2]. In this case, each 12-dimensional feature
vector vn, n ∈ [1 : N ], and wm, m ∈ [1 : M ], ex-
presses the audio’s local energy distribution in the 12 chroma
classes. Fixing a suitable local similarity measure— here, we
use the inner vector product—the (N ×M)-similarity matrix
Schroma is de ned by Schroma(n, m) := 〈vn, wm〉. Each tu-
ple (n, m) is called a cell of the matrix. A path is a sequence
p = (p1, . . . , pL) with p� = (n�, m�) ∈ [1 : N ] × [1 : M ]
for � ∈ [1 : L] satisfying 1 ≤ n1 ≤ n2 ≤ . . . ≤ nL ≤ N

and 1 ≤ m1 ≤ m2 ≤ . . . ≤ mL ≤ M (monotonicity condi-
tion) as well as p�+1 − p� ∈ Σ, where Σ denotes a set of ad-
missible step sizes. For example, in classical DTW one uses
Σ = {(1, 0), (0, 1), (1, 1)}. The score of a path p is de ned
as

∑
L

�=1 S
chroma(n�, m�).

Recall that a path with a high score reveals the similarity
of two audio segments, which correspond to projections of
the path onto the vertical (segment in the rst audio record-
ing) and the horizontal axis (segment in the second audio
recording). For example, the path in Fig. 1f starting at cell
(1, 18) and ending at cell (67, 69) reveals the similarity of the
two audio segments that correspond to musical part A1

1B
1
1B1

2

in the rst and musical part A2
2B

2
1B2

2 in the second record-
ing. The extraction of the path structure from a similarity ma-
trix is a dif cult problem due to musical variations in audio
recordings. To ease the extraction step, we further enhance
the path structure of Schroma by using a contextual similarity
measure as described in [5]. The enhancement procedure can
be thought of a multiple ltering of Schroma along various di-
rections given by gradients in a neighborhood of the gradient
(1, 1). We denote the enhanced similarity matrix by Senh, see
Fig. 1b for an illustration.

¿From Senh, we extract paths with a high score using an
iterative greedy strategy, see [2] for a similar strategy. The
idea is to start a new path with a cell of maximal score, which
is then successively extended to the upper right and lower
left by cells that possess a score above a certain threshold,
while respecting the step size condition. After removing such
an extracted path along with a suitable neighborhood (setting
the score to zero for all these cells), the process is iterated
until all cells have a score below the threshold. Finally, the
extracted path structure is converted into a similarity matrix
Spath, where all cells that belong to extracted paths obtain a
score of one and all other cells a score of zero, see Fig. 2c.
To further improve and reinforce the extracted path structure,
we additionally perform a joint structural analysis of the two
audio recordings, see [2] for details. The resulting similarity
clusters are translated back into a matrix representation de-
noted by Sstruct. The idea is that the structural analysis com-
prises a transitivity step recovering missing path relations as
well as complementing fragmented paths, cf. Fig. 2c and 2d.
We now combine the different similarity matrixes to form

a single path-constrained similarity matrix denoted by Spc:

Spc :=
1

6
(Spath + Sstruct) ∗ (Schroma + Senh + 1),

where ∗ denotes pointwise multiplication of matrix entries.
Note that the entries of all involved matrices possess a value
between 0 and 1. Because of the factor (Spath + Sstruct),
only cells that belong to the extracted or reinforced path
structure can have a non-zero score in Spc. The factor
(Schroma +Senh +1) ensures that all these cells actually have
a non-zero score and are additionallyweighted through under-
lying score values given by Schroma and Senh. The important
point is that the resulting path-constrained similarity matrix
explicitly incorporates structural information, thus constrain-
ing possible matches in a semantically meaningful way.
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Fig. 2. Similarity matrices of two different audio record-
ings of a Waltz by Shostakovich having the musical form
A1A2BA3A4. (a) Schroma. (b) Senh. (c) Spath. (d) Spc.

3. PARTIAL MATCHING PROCEDURE

Our goal is to align similar and possibly long consecutive seg-
ments in the two audio recordings. In case, a part in one au-
dio recording does not have a suitable counterpart in the other
recording, we prefer to have no alignments rather than hav-
ing bad alignments. In view of such requirements, we need
a more exible notion of alignment that allows for arbitrary
step sizes. A match is a sequence μ = (μ1, . . . , μL) with
μ� = (n�, m�) ∈ [1 : N ] × [1 : M ] for � ∈ [1 : L] sat-
isfying 1 ≤ n1 < n2 < . . . < nL ≤ N and 1 ≤ m1 <

m2 < . . . < mL ≤ M . Note that a match induces a partial
alignment, where an element in one sequence is assigned to
at most one element in the other sequence. The score of a
match μ with respect to a similarity matrix S is then de ned
as

∑
L

�=1 S(n�, m�).
Similarly to DTW, one can use dynamic programming to

compute a score-maximizing match with respect to S. To this
end, one recursively de nes the accumulated similarity matrix
D by D(n, m) := max{D(n, m − 1), D(n − 1, m), D(n −
1, m − 1) + S(n, m)} and D(n, 0) := D(0, m) := 0 for
n ∈ [0 : N ] and m ∈ [0 : M ]. The optimal score is then
given by D(N, M) and the score-maximizing match can be
constructed by a simple backtrack algorithm, see [4]. Note
that the exibility of a match comes at the expense of loosing
stability in the global alignment. For example, a match with
respect to the unconstrained similarity matrices S = Schroma

or S = Senh may lead to semantically useless alignments
as illustrated by Fig. 1c. Our idea is to retain control over
the nal alignment by using the path-constrained similarity
matrix S = Spc. This inherently leads to semantically more
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Fig. 3. Similarity matrices of two audio recordings with mu-
sical forms A1

1A
1
2B

1C1A1
3 and A2

1B
2C2

1C2
2A2

2, respectively.
(a) Senh. (b) Spc with score-maximizing match μ. (c)Match
μ′ after substitution procedure. (d) Final match μ′′. This
match correctly aligns partA1

2B
1 with A2

1B
2 ( rst path com-

ponent) and C1A1
3 with C2

2A2
2 (second path component).

meaningful matches, where all cells of the match necessarily
lie on the extracted path structure, cf. Fig. 1c and Fig. 1e.
Using S = Spc, the resulting match still may exhibit un-

necessary “gaps”, which induce an over-fragmentation in the
alignment of the audio material. In particular in parts with
consecutive repetitive segments (manifested as “striped re-
gions” in the similarity matrices) the partial match may reveal
more or less random gaps within such segments. To make
this point clearer, we consider the example shown in Fig. 3.
Here, the rst recording has the musical form A1

1A
1
2B

1C1A1
3

and the second one A2
1B

2C2
1C2

2A2
2. The match indicated by

Fig. 3b aligns the beginning of A2
1 with the beginning of A1

1

and the end of A2
1 with the end of A1

2. ¿From a semantic
point of view, however, A2

1 should be entirely aligned either
withA1

1 or withA1
2. In order to eliminate such gaps as well as

to produce preferably long consecutive runs in the nal align-
ment, we postprocess the match in a cleaning step. To this
end, we rst decompose match μ into pairwise disjoint path
components of maximal length. Here, two consecutive cells
of μ are considered to belong to the same path component if
their corresponding indices differ by at most a given threshold
τ . (In our implementation, we use τ = 3.) For example, in
Fig. 3b, the match consists of three path components. Next,
we successively extend the longest path component of μ to
the upper right and lower left, say by a cell (n, m), while
eliminating a cell (a, b) that lies on one of the shorter path
components in case the following three conditions are satis-
ed. First, the extension by (n, m)must comply with the step
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Fig. 4. Alignment of a solo recording of the song “Yesterday”
by Paul McCartney with the corresponding original Beatles’
album version. The solo version was modi ed by removing
(a) a chorus section and (b) intro and outro sections. White
diamonds indicate start and end points of musical sections.

size condition. Second, the substitution condition a = n or
b = m must hold. (In our implementation, we allow some
tolerance of up to τ indices, i.e., n − τ ≤ a ≤ n + τ or
m − τ ≤ b ≤ m + τ .) Third, the relative score condi-
tion Spc(n, m) > ρ · Spc(a, b) for some tolerance parame-
ter ρ ∈ (0, 1) must hold (we use ρ = 0.6). This process is
iterated until the longest path component cannot be further
extended. We then remove this component from the match
and proceed in the same fashion with the remaining cells of
the match. All resulting extended path components consti-
tute a new match μ′, see Fig. 3c. This procedure decreases
or retains the number of path components. However, on the
downside, the new match μ′ has a lower overall score than μ.
To partially compensate for this loss without again increasing
the number of path components, we restrict Spc to all con-
nected regions of positive score that contain at least one cell
of μ′ (the score of all other cells is set to zero). We then repeat
the partial matching procedure to obtain an optimal match μ′′

with respect to the so restricted similarity matrix, see Fig. 3d.
This match constitutes our nal alignment result.

4. EXPERIMENTS

To evaluate our synchronization procedure, we manually la-
belled musically meaningful sections of several audio record-
ings of various genres. The recordings we considered exhibit
omissions and insertions of segments that have a duration of
20 seconds or more. In our evaluation, allowing a tolerance
up to a few seconds, we compared the matches that are com-
puted by our algorithm with musically meaningful matches.
In a rst experiment, we randomly inserted and removed

segments in a given recording and aligned it with the original
one. In such a simple scenario, our synchronization proce-
dure worked with nearly perfect precision. In a second ex-
periment, we simulated a more realistic scenario. We formed
synchronization pairs each consisting of two different inter-
pretations of the same piece. We then modi ed the pairs
by randomly removing some of the labelled sections. The
match computed by our algorithm was analyzed by means of

its path components. A path component is said to be cor-
rect if it aligns corresponding musical sections and strongly
correct if, additionally, its start and end points appear at the
labelled musical segment boundaries up to a certain tolerance,
see Fig. 4. Similarly, a match is said to be (strongly) correct if
it is maximal (up to a certain tolerance) and if all its path com-
ponents are (strongly) correct. We tested our algorithm on
246 different synchronization pairs resulting in a total num-
ber of 565 path components. As a result, 91% of all paths are
correct and 54% are even strongly correct (using a tolerance
of 3 seconds). Furthermore, 86% (57%) of all matches were
correct (strongly correct). Using a tolerance of 5 seconds,
the number of correct (strongly correct) matches increased
to 92% (72%). First experiments show that the correctness
rates can be further improved by combining alignment results
obtained from different temporal resolutions (e. g., 1 Hz and
2 Hz) and by integrating prior knowledge about the musi-
cal structure, e. g., obtained from a previous audio structure
analysis [2]. For a detailed presentation of representative re-
sults, we refer to http://www-mmdb.iai.uni-bonn.de/
projects/partialSync/. Here, one also nds soni ca-
tions of the alignment results.

5. CONCLUSIONS

In this paper, we have introduced a new synchronization pro-
cedure, which allows for partially aligning possibly long and
connected portions of two given audio recordings in the pres-
ence of structural differences. Our contribution substantially
extends recent synchronization procedures, which are based
on the assumption of global correspondence. For future work,
we will characterize the unaligned parts and extend our align-
ment scenario to also account for temporally reordered struc-
tures. As an important future application, our matching pro-
cedure may be applied for partially annotating audio record-
ings even in situations where one only has fragments of cor-
responding MIDI or score material (using a direct conversion
of symbolic music into a chroma representation, see [1]).
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