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ABSTRACT 
 
Reliably measuring similarity between audio clips is critical to 
many applications. As opposed to the conventional way of meas-
uring audio similarity using low-level features directly, in this 
paper we consider the similarity computation using an anchor 
space. Each dimension of such a space corresponds to a semantic 
category (anchor). Mapping an audio clip onto this space results 
in a vector, which indicates the membership probability of this 
audio clip with respect to each semantic category. The more simi-
lar the mappings of two audio clips, the more similar they are. 
While an anchor space is typically generated in a supervised fash-
ion, supervised approach is infeasible in many realistic scenarios 
where audio content semantics is too diverse or simply unknown 
a priori. We therefore propose an unsupervised approach to an-
chor space generation. There, spectral clustering is employed to 
cluster the audio clips with similar low-level features and then the 
obtained clusters are adopted as semantic categories. Using this 
semantic space for audio similarity computation shows a consid-
erable accuracy improvement (7% on mAP) in an audio retrieval 
system, compared with the conventional low-level feature based 
approach. 
  

Index Terms— audio similarity computation, anchor space, 
audio content analysis, audio segmentation 
 

1. INTRODUCTION 
 
A reliable method for computing similarity between audio clips is 
the basis for virtually all higher-level processing steps and appli-
cations involving audio signals, such as content-based audio re-
trieval, categorization, recommendation, and personalization. An 
audio clip can be as short as an audio segment (several seconds), 
or as long as an audio document (several minutes). As can be seen 
from previous works on audio classification [9], audio effects 
detection [3], and audio event and scene analysis [4][12], audio 
content similarity is typically computed by directly comparing 
audio clips in terms of low-level features. However, while this 
may work well for short audio segments (e.g. as typically the case 
in classifying audio segments into speech, music and noise), this 
is not likely to work well in the case of longer audio documents 
due to the richness of signal mixtures and their strong variations 
over time. Clearly, a more sophisticated representation scheme 
needs to be found for long audio documents, which can neglect 
irrelevant signal variations and reveal their high-level similarity. 

As an alternative to the conventional approaches to audio simi-
larity computation, an anchor space can be created, the dimen-
sions of which correspond to various (mid-level) semantic catego-

ries. Typical examples of such categories are audio elements [2][8] 
or audio keywords [12], which we created and used in our previ-
ous work to compute the similarity of short audio segments for the 
purpose of composite audio analysis and auditory scene clustering.  
As an analogy to this, a longer audio document could also be 
represented in a suitable anchor space, just as a text document can 
be represented by a vector of words and their weights. Such an 
approach therefore enables a more reliable analysis of long audio 
documents, due to suppression of irrelevant temporal fluctuations 
of audio signal composition. If an audio document is mapped onto 
the anchor space, the value obtained for each dimension indicates 
the membership probability of this audio document with respect to 
the corresponding semantic category. The more similar the mem-
bership of two audio documents in each semantic category, the 
more similar these two audio documents are.  

An anchor space can be created in a supervised or an unsuper-
vised fashion.  A supervised approach usually reaches high accu-
racy and allows control of the semantic level at which anchors are 
defined [1]. As shown by Berenzweig et al. [1], the selection of 
anchor in the case of music classification and similarity computa-
tion can be done even at a level as high as artist names and music 
genres. However, the supervised approach is infeasible if process-
ing an unknown composite audio document, or if audio content 
semantics is too complex (diverse) to easily select appropriate 
anchors. With the objective of expanding the applicability of the 
anchor space concept onto a general audio content analysis case, 
and based on our previous work [2][8] on unsupervised content 
analysis in general composite audio signals, we propose in this 
paper an unsupervised method for building an anchor space. 
While our previous work focused on auditory scenes clustering 
within one audio document, in this paper we consider the compu-
tation of similarity between longer audio documents.  

We start the technical part of this paper in Section 2, by ex-
plaining the low-level feature extraction step, which forms the 
basis of anchor space generation. Then, Section 3 reviews the 
conventional methods for feature-based audio similarity computa-
tion. In Section 4, we focus on the challenging problem of build-
ing an anchor space for a general composite audio in an unsuper-
vised fashion. In Section 5 we evaluate the proposed approach, by 
comparing it to the conventional (feature-based) methods and 
with an anchor space created in a supervised fashion. Section 6 
concludes the paper. 

 
2. AUDIO FEATURE EXTRACTION 

 
To extract low-level features, an audio document is first divided 
into frames of 25ms with 50% overlap. Inspired by previous 
works on content-based audio classification and audio effect de-
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tection [2][9], a set of features is extracted to characterize an au-
dio frame, including short-time energy, zero-crossing rate, sub-
band energy ratios, brightness, bandwidth, pitch, pitch periodicity, 
8-order Mel-frequency cepstral coefficients (MFCCs), sub-band 
spectral flatness, sub-band spectral flux and harmonicity promi-
nence. In our approach, the spectral domain is equally divided 
into 8 sub-bands in Mel-scale and then the sub-band features are 
extracted. All the above features are collected into a 39-
dimensional feature vector per audio frame. 

In order to reduce the computational complexity, we choose to 
group audio frames into temporal audio segments with a sliding 
window of 1 second with 0.5 seconds overlap, and to use these 
audio segments as the basis for the subsequent steps. At each win-
dow position, the mean and standard deviation of the frame-based 
features are computed and used to represent the corresponding 
one-second-long audio segment (78 dimensions). 

Since the characteristics and dynamics of each feature compo-
nent are quite different, a normalization process is performed on 
each feature component to make their value ranges similar. The 
normalization is processed as iiii xx σμ /)(' −= , where xi is the i-th 

feature component, and where the corresponding mean i and 
standard deviation i can be calculated from a development data-
set. Besides normalization, we also employ principle component 
analysis (PCA) to further reduce the dimensionality of the rele-
vant feature space. In our approach, a reduction from the original 
78 dimensions to 45 dimensions was reached.  

 

3. FEATURE-BASED AUDIO CLIP SIMILARITY  
 
Table 1 summarizes some typical approaches for computing audio 
similarity using low-level features directly. Depending on how the 
features are modeled and used for similarity computation, we 
distinguish here three basic classes of approaches, which we label 
as Mean, Gaussian and GMM: 

 Mean: an audio clip is represented by averaging the feature 
vectors. Various distance metrics, such as L1, can be used to 
measure the similarity in this case. 

 Gaussian: an audio clip is represented by a Gaussian feature 
model. Here, KL divergence (KLD) [7] can be used to meas-
ure the distance of such models. For symmetry, the distance 

)||()||(),( fgKLgfKLgfD +=  is typically used. 
 GMM: an audio document is represented by a Gaussian Mix-

ture Model (GMM). KLD can also be used to measure the 
similarity between two GMMs. For this purpose, two ap-
proximation algorithms can be used, the pairing scheme and 
unscented transform [6]:  
- Pairing: each Gaussian kernel fi in GMM f is first paired 

with the kernel gj in GMM g which is the most similar to 
fi, and then the KLD between two GMMs is approximated 
by the weighted sum of the KLD between each kernel pair, 
as 
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- Unscented transform: unscented transform is usually used 
to obtain a better alternative to the extended Kalman filter.  
Following [6], the KLD between two GMMs is approxi-
mated as, 
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where xi;k is the kth “sigma” point in the i-th kernel fi = 

N( i, i), i.e., kiiki Dx ;; σμ += and kiiDki Dx ;; σμ −=+  

(1≤ k ≤ D), and D is the feature dimension; 

),...,,( 2
;

2
2;

2
1; Diiii σσσ=Σ is the diagonal covariance matrix; 

and p(xi;k | f) is the probability density function of a GMM. 
 GMM with tied covariance. Some audio documents may not 

have enough segments to accurately estimate the covariance 
parameters of each Gaussian kernel. Parameter tying, the 
technique often used in speech recognition, can be employed 
in this case. Covariance parameters are tied and trained to-
gether by all the segments of an audio document.  

 

Table 1: Low-level feature based audio document representation 
and corresponding similarity measure 

Document Representation Similarity Measure 

Mean L1 

Gaussian KL(f || g ) + KL(g || f ) 

KLD, unscented transform GMM (w/o parameter ty-
ing) KLD, pairing based algorithm. 

 

4. AUDIO SIMILARITY BASED ON ANCHOR SPACE  
 
The first step in building an anchor space is to select the set of 
anchors (i.e., space dimensions). If we denote the n-dimensional 
anchor set by (C1, C2, …, Cn), the mapping of an audio document 
onto this anchor space can be represented by the vector  

[ ])|(...,),|(),|( 21 dCpdCpdCp n  (3) 

Here, p(Ci | d) represents the membership (posterior probability) 
of the audio document d with respect to the anchor (semantic class) 
Ci.  The probability p(Ci | d) can be further calculated as following, 
supposing the prior p(Ci ) is uniformly distributed, 
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and the likelihood p(d | Ci) is calculated as, 
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where sk is the k-th audio segment in the audio document d; N is 
the segment number; p(sk | Ci) is the segment likelihood given the 
semantic category Ci.  

Compared with the above document-level “normalization” (i.e., 
normalize on p(d | Ci) as (4)), we can also employ segment-level 
normalization, that is, mapping each audio segment onto the an-
chorspace, then normalizing on the likelihood vector <p(sk | Ci)> 
for each audio segment, and finally obtaining the audio document 
representation as the mean of the audio segment representation, 
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each audio segment given the semantic category Ci.  In this case, 
the idea is to first assign each audio segment to semantic classes, 
and then the document representation indicates how many seg-
ments are assigned to each semantic class.   
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Independent of which approach is employed, the representation 
vector (3) makes it possible to employ KLD for computing the 
distance between two audio documents. The more similar the 
mappings of two documents, the more similar they are. 
 
4.1 Supervised Anchor Space Generation 

Having available a set of pre-defined semantic classes and suffi-
cient manually labeled training data, a number of supervised 
learning techniques can be used to train the semantic class Ci. 
These techniques include support vector machines (SVM), hidden 
Markov model (HMM), GMM, and neural networks [1]. In this 
paper, each semantic class is modeled by a GMM, so that the 
probability p(sk | Ci) can easily be computed.  
 
4.2 Unsupervised Anchor Space Generation 

Supervised approaches usually reach high accuracy in modeling 
and classification of data. However, in many realistic scenarios, 
no information about the content carried by the processed data is 
available. In these cases, no (complete) set of semantic classes 
representative for the dataset can be predefined, and no appropri-
ate training data can be collected. In order to expand the applica-
bility of the anchor space concept onto a general composite audio, 
we propose an unsupervised approach to automatically discover 
and build the anchors.  

In general, clustering techniques can be applied, and the audio 
segments with similar low-level features can be clustered together 
and adopted as a semantic class. However, traditional clustering 
algorithms, such as K-means, are based on the assumption that the 
cluster distributions in the feature space are Gaussians [5], which 
is usually not satisfied in complex cases. Also, the cluster results 
are usually affected by the pre-selected centroids, so that multiple 
restarts are needed to obtain the optimal results. As a promising 
alternative, spectral clustering [10] showed its effectiveness in a 
variety of complex applications, such as image segmentation [13] 
and the multimedia signal clustering [11]. Following [2], we also 
choose to employ spectral clustering in our approach, and adopt 
the self-tuning strategy [14] to further improve the robustness of 
the clustering process. 

In the spectral clustering algorithm [10], an affine matrix is 
first derived from the data corps, which measures the similarity 
between each pair of data points (in our case, one-second-long 
audio segments); then a SVD is performed to extract the eigenvec-
tors and map the original data into a low-dimensional space that 
can be easily clustered.  Now, a practical issue to be resolved is 
the size of the affine matrix.  If there are 300 audio clips in the 
development set, and if each clip has 3 minutes (i.e. around 360 
audio segments), the size of the affine matrix will be around 
(300*360)2 *4B > 40GB (each value in the matrix is a 4-byte 
float). Such a matrix is impractical to handle and slows down the 
SVD considerably. To resolve this, a simplification scheme is 
proposed: Instead of using all feature vectors, we represent each 
audio document by the mean vector only (averaging the feature 
vectors therein), and then apply spectral clustering on the set of 
the mean vectors computed for the entire data set.  The obtained 
clusters are then adopted as anchors. 

Regarding the number of clusters to be formed, spectral cluster-
ing proposes an estimation approach based on the eigen-gap [10]. 
However, in our approach, we manually set various cluster num-
bers to investigate its effect in the final similarity measure.  
 

5. EVALUATIONS 
 

For our experiments, we collected around 3000 audio documents 
that were extracted as sound tracks of the video clips from MSN 
Video. Each audio document usually lasts 2-5 minutes, and is 
associated with a category (also obtained from MSN Video). 
There are in total 15 categories, including Autos, Business, Enter-
tainment, Games, Live Music, Sports, Weathers, and so on.  We 
randomly chose 300 documents as a development set for anchor 
space building. The rest of the audio documents are kept as the 
test set.   

We test our anchor space building method on a retrieval sce-
nario, for which an audio retrieval system is built. As evaluation 
strategy, we apply a leave-one-out-like approach, that is, we select 
each audio document in the test set as a query, after which all 
other audio documents are ranked based on the proposed similar-
ity measure. The documents belonging to the same category are 
assumed similar in our experiments. Mean average precision 
(mAP), a common metric in information retrieval, is employed to 
quantify the retrieval performance. The mAP is actually the mean 
value of the average precisions (AP) computed for each query 
separately. To obtain the AP value for a particular query, the pre-
cision is first computed at each relevant document retrieved, and 
then these precisions are averaged over the entire test data set.  
Clearly, the more relevant documents occur higher in the ranked 
document list, the higher the AP.  The AP value per query can be 
computed using the expression,  
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where r is the rank, M is the size of the test set, rel(r) is a binary 
function indicating the relevance of the audio document at rank r 
with respect to the query, and P(r) is the precision at top r re-
turned documents. 

Next to the mAP, the mAP@N is also evaluated, which repre-
sents the mean average precision at the top N ranks (similar to (7), 
but with a fixed N replacing M). The latter metric may be practi-
cally useful since the users are usually ready to review only the 
first N retrieved documents and do not want to check the entire 
data set.  

 
Table 2: Evaluation of low-level feature based audio document 
similarity measure (%), where Mean, GAU and GMM are three 
representation schemes; tiecov: using parameter tying for covari-
ance parameter estimation; pair: paring scheme, ut: unscented 
transform. 
 mAP mAP25 mAP50 mAP100 

[Mean, L1] 41.4 71.9 66.8 61.2 

[GAU, KL] 43.3 72.6 67.6 62.1 

[GMM, KL.pair] 39.5 69.6 64.2 58.5 

[GMM, KL.ut] 40.7 70.1 64.9 59.3 

[GMM.tiecov, KL.pair] 43.7 72.9 68.0 62.5 

[GMM.tiecov, KL.ut] 43.9 73.2 68.2 62.7 

 
Table 2 shows the retrieval performance when using the simi-

larity measures based on low-level features (in Section 3). As 
expected, the Gaussian feature models work better than a simple 
averaging of the feature vectors (2% improvement on mAP). 
However, the mAP decreases when audio documents are modeled 

55



with GMM. This is mainly due to the insufficient data available to 
model the covariance at each kernel. Using the parameter tying 
scheme, the mAP improves for 3%, compared with the untying 
one. The table also shows the comparison between the unscented 
transform and the pairing scheme to realize the approximate KLD 
between two GMMs. The mAP obtained by these two approxi-
mate approaches is very similar in our cases. 
 
Table 3: Evaluation of the anchor space based audio document 
similarity measure (%), comparing the supervised approach (sup) 
vs. unsupervised anchor space building (unsup); segment-level 
normalization (segl) vs. document-level normalization (docl); and 
various cluster numbers (as the first number in the first column 
indicates)  

 mAP mAP25 mAP50 mAP100 

[15. sup, docl] 61.3 73.2 71.4 69.3 

[15. sup, segl] 58.7 77.3 74.3 71.2 

[10, unsup, docl] 44.0 62.1 58.3 54.7 

[10, unsup, segl] 45.0 65.6 61.7 57.8 

[16, unsup, docl] 46.0 65.4 61.5 57.7 

[16, unsup, segl] 48.5 70.6 66.7 62.7 

[20, unsup, segl] 49.7 71.4 67.6 63.9 

[24, unsup, segl] 50.7 72.5 68.8 65.1 

[28, unsup, segl] 50.4 73.0 69.2 65.2 
 

Table 3 shows the retrieval performance when using the simi-
larity measure based on an anchor space. We tested this for both 
supervised and unsupervised case. In the implementation of the 
supervised approach, we selected 15 anchors, where each anchor 
corresponds to each category, and is modeled by a GMM with 4 
mixtures. With this setup, the performance has dramatically im-
proved compared to the low-level feature based approach. The 
mAP is up to 61.3% and improves for 18%.  

In evaluating our unsupervised anchor space building approach, 
we tried different cluster numbers, including 10, 16, 20, 24, and 
28; and each clustered semantic class is also modeled as a GMM 
with 4 mixtures The best mAP (50.7%) is achieved with the clus-
ter number 24 and with segment-level normalization. It achieves 
7% absolute improvement compared with the low-level features 
based approach, which shows the effectiveness of the unsuper-
vised approach. However, compared with the supervised case, the 
mAP still has 10% lower retrieval performance. This indicates that 
there is still much room to improve the unsupervised approach. 
We need to discover which additional information could be poten-
tially helpful and then employ it in anchor space building.  

Regarding the comparison between the segment-level normali-
zation and document-level normalization, the former performs 
slightly better in the unsupervised case, while the latter is better in 
the supervised case. This can be explained in the following way. 
In the supervised approach, the anchor space is built on the cate-
gories, and a category is also the ground-truth to measure if two 
audio documents are similar. From this point of view, the super-
vised learning approach presented in this paper is more like audio 
document classification. Therefore, to calculate the posterior p(Ci | 
d), that is to perform document-level normalization, works better 
in this case. However, in the unsupervised anchor space building, 
each semantic class is similar to an audio element. Thus, an audio 
document is better represented by a vector indicating the ratio of 

audio segments assigned to each semantic class. The posterior 
p(Ci | s), that is, segment-level normalization, is a necessary step 
for such a document representation. 

 

6. CONCLUSION 
 

This paper proposes a novel approach to unsupervised anchor 
space generation for the purpose of audio document similarity 
measurement. We employ spectral clustering to group audio seg-
ments with similar low-level features, after which the obtained 
clusters are adopted as anchors. Mapping an audio document onto 
such an anchor space and then computing the similarity between 
two audio documents based on their mappings leads to an im-
provement of up to 7% mAP in an audio retrieval scenario, com-
pared to the conventional feature-based similarity measures. Our 
comparison of this unsupervised approach with supervised anchor 
space generation showed there is still some room to improve the 
unsupervised approach. For, example, we may use GMM to repre-
sent each audio clip and measure their similarity for spectral clus-
tering. It might generate better anchor models, so as to improve 
the mAP of audio retrieval.  
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