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ABSTRACT

This contribution details the development of a mask-based post- pro-
cessor to improve the interference suppression in speech signals sep-
arated using linear deconvolution algorithms like Independent Com-
ponent Analysis (ICA). The design of the proposed post-filter is
in two stages: in the first stage, use is made of the disjointness of
the separated signals in the time-frequency domain to obtain binary
masks to suppress cross-talk that generally remains after separation.
In the next stage, a novel smoothing of the masks is proposed that
preserves the speech structure of the target source while eliminating
the random peaks in the time-frequency plane that lead to fluctuat-
ing background noise. The result is an enhanced signal with reduced
cross-talk and no musical noise.

Index Terms— independent component analysis, time-frequency
masking, post processing, cepstro-temporal smoothing, musical noise

1. INTRODUCTION

Source separation techniques are concerned with extracting individ-
ual sources from mixtures of competing sources. Generally, these
approaches are ‘blind’ in that no a priori knowledge is available re-
garding the sources. The techniques may be broadly classified into
two major categories – linear and non-linear.

Linear deconvolution algorithms for the blind speech separation
problem are based on a linear generative mixing model: the observed
mixtures are assumed to be linear combinations of the individual
speech signals. Consequently, separation is accomplished by con-
volving the mixtures with the inverse room impulse responses and
linearly combining them to yield signals in which only one speaker
signal is predominant. Such separation approaches are dependent on
the long time statistical properties inherent to speech, e.g., statistical
independence between two speaker signals, non-whiteness and non-
Gaussianity. These properties are exploited either using higher order
statistics (as in the ICA based approaches of, e.g., [1, 2, 3]) or the
second order statistics over different time-lags (as in the approaches
of [4, 5], to mention a few).

Non-linear approaches to speech signal separation seek an op-
timal partitioning of the time-frequency (T-F) plane – defined by
the discrete Fourier transforms of overlapped, short, windowed sig-
nal frames – into T-F components for each individual source. As
demonstrated in [6, 7, 8], speech signals of different speakers have
mostly non-overlapping supports in the time-frequency plane. This
property may be made use of, for partitioning, if one has some a
priori knowledge regarding which source occupies which T-F point.
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In such cases, and when the sources are completely disjoint to one
another in the T-F plane, one can use binary masks to completely
suppress the interfering sources and recover only the desired source.
Such mask-based approaches and variations/improvements thereof
are detailed in [6, 9, 10, 11, 12].

Obviously, the performance of the mask-based algorithms is con-
tingent upon the validity of the disjoint-support model which, how-
ever, does not hold as strongly in reverberant environments. Conse-
quently, these approaches steadily deteriorate in performance as the
reverberation increases [8]. Moreover, the masks generated over the
T-F plane are very dynamic and often vary significantly from one
time-frame to the next. Errors in the estimation of the masks give
rise to random isolated peaks in the masked spectrum, resulting in
sinusoidal artefacts of one-frame duration and varying frequencies
in the re-synthesized signal, which are perceived as so-called musi-
cal noise.

On the other hand, as linear algorithms are based on long term
statistics, the demixing filters, once estimated, remain constant over
a relatively long period of time – leading to no musical noise in the
separated signals. Further, such approaches perform well even in
rather reverberant environments. However, due to the dependence
on long term statistics, linear algorithms can only suppress the in-
terference on an average. Consequently, interference suppression is
obtained to a lesser extent as compared to the mask-based methods.

Performance of the linear algorithms may be enhanced by the
use of post processors which operate on the signals output by the
demixing algorithms. This contribution details the development of
such a post processor. The document is structured as follows: Sec-
tion 2 introduces the signal model and the notations used subse-
quently in the text. Section 3 describes existing approaches to post-
processing followed by their caveats. The proposed approach is then
described Section 5 and evaluated via listening tests in the following
section.

2. SIGNAL MODEL

Blind source separation (BSS) approaches usually consider a sce-
nario in which Q simultaneously active sources sq are recorded at
M closely spaced microphones in a room:⎡
⎢⎣

x̃1(t)
...

x̃M (t)

⎤
⎥⎦ =

⎡
⎢⎣

h̃11(t) · · · h̃1Q(t)
...

. . .
...

h̃M1(t) · · · h̃MQ(t)

⎤
⎥⎦∗

⎡
⎢⎣

s̃1(t)
...

s̃Q(t)

⎤
⎥⎦ , (1)

where the h̃mq(t) represent the room-impulse responses from source
q to microphonem and ∗ represents the convolution operator. Usu-
ally separation is done in the short-time discrete Fourier domain,
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where the mixing model may be approximated as:⎡
⎢⎣

x1(k, n)
...

xM (k, n)

⎤
⎥⎦=

⎡
⎢⎣

h11(k) · · · h1Q(k)
...

. . .
...

hM1(k) · · · hMQ(k)

⎤
⎥⎦
⎡
⎢⎣

s1(k, n)
...

sQ(k, n)

⎤
⎥⎦ ,

(2)
where k represents the frequency bin index and n the time-frame
under consideration and the convolution is replaced by the multi-
plication operator. Note that the spectral model in (2) implies an
approximation of the h̃mq by finite impulse responses.

Linear separation algorithms then seek optimal filters wqm(k)
such that the de-mixed signals yq(k, n) predominantly contain only
one source signal as received at the microphone, i.e.,⎡
⎢⎣

y1(k, n)
...

yQ(k, n)

⎤
⎥⎦ =

⎡
⎢⎣

w11(k) · · · w1M (k)
...

. . .
...

wQ1(k) · · · wQM (k)

⎤
⎥⎦
⎡
⎢⎣

x1(k, n)
...

xM (k, n)

⎤
⎥⎦

=

⎡
⎢⎣

a11(k) · · · a1Q(k)
...

. . .
...

aQ1(k) · · · aQQ(k)

⎤
⎥⎦
⎡
⎢⎣

s1(k, n)
...

sQ(k, n)

⎤
⎥⎦(3)

where aqq(k) ≈ hqq(k) to solve the scaling uncertainty [2, 13] and
aqm(k) ≈ 0, m �= q, for interference suppression.

Usually the anti-diagonal terms of the filter matrix in equation
(3) are not zero due to the approximation in (2), errors in the estima-
tion of the demixing filters and due to the approximation of the room
impulse response by finite-length FIR filters, giving rise to cross-
talk, which is especially disturbing during the speech pauses of the
target speaker.

3. POST-PROCESSING

To obtain enhanced separation in reverberant environments, the re-
verberation-robust linear algorithms in (3) are first used to obtain an
approximation to the separated signals (yq(k, n) ≈ hqq(k)sq(k, n)).
Next, assuming the disjointness [7] of the underlying, true, source
signals sq(k, n), we have

sq(k, n)sq′(k, n) = 0, ∀q′ �= q. (4)

In other words, only one speaker is dominant at any one T-F point
(k, n). Consequently, we may conclude, for instance, when any one
recovered signal has more energy than the others at any T-F point,
the corresponding source is dominant for that point and appears in
the other signals as interference. Thus we may define suitable masks
Mq(k, n) in the time frequency domain to block out such cross-talk.
In their simplest form these masks are defined as:

Mq(k, n) =

{
1 γ |yq(k, n)| > max

∀q′ �=q
(|yq′(k, n)|)

Mmin else
(5)

where 0 < γ ≤ 1 is used to prevent spurious triggering of the masks,
and where Mmin is the maximum suppression allowed. The final,
enhanced signals are subsequently obtained as

zq(k, n) = Mq(k, n)yq(k, n), (6)

from which the discrete time signals may be reconstructed by the
inverse discrete Fourier transform, followed by standard overlap-add
procedures.

Such post-processors based on binary masks have been proposed
in, e.g., [14] (for various γ). Further improvements to mask-based
post-filters include that presented in [12] and [15].

4. CAVEATS OF POST-PROCESSING

While the mentioned post-processing approaches enhance the sup-
pression of the interference signal, the time-variant nature of the
masks in the T-F plane introduces musical noise into the signal.
One way to avoid this harmonic distortion is to smooth the masks
along time and/or frequency. However, simple temporal smoothing
delays the response of the masks to speech onsets and smoothing
along frequency has the effect of reducing the spectral resolution –
smearing the signal across the spectrum. Another way is to use soft
masks, which alleviate this problem by limiting the achievable sup-
pression. However, the drawback here is that the interfering signal is
suppressed to a lower extent as compared to when binary masks are
used.

Therefore, for good interference suppression and no musical
noise we shall use binary masks followed by an optimal smoothing
algorithm that is able to distinguish between unwanted isolated ran-
dom peaks in the maskMq(k, n) on one side and mask patterns re-
sulting from the spectral structures of the target speech on the other.
Such a smoothing is the topic of the following section.

5. MASK SMOOTHING IN THE CEPSTRAL DOMAIN

As speech signals, in general, have a broad-band envelope, a tem-
poral smoothing should not be applied to the mask when the broad-
band structure of the signal changes. Likewise, a change in the fine
structure of the spectrum that originates from an onset of voiced
speech (pitch harmonics) must also be protected from smoothing ef-
fects. Ideally, the smoothing should only affect irregular peaks of
short duration. This distinction between the speech related broad-
band structures and regular pitch harmonics on one side and the ir-
regular fine-structured artefacts like isolated random peaks on the
other is accomplished in the cepstral [16] domain. Consequently,
the cepstral representation of the mask pattern – M

cepst
q (l, n) – is

first obtained as:

Mcepst
q (l, n) = DFT−1

{
ln(Mq(k, n))

∣∣
k,=0,...,K−1

}
, (7)

where l is the quefrency bin index, DFT
{
·
}
represents the dis-

crete Fourier transform operator, and K is the length of the trans-
form. Next a first order, temporal, recursive smoothing is applied to
M

cepst
q (l, n) as:

M
cepst
q (l, n) = βl M

cepst
q (l, n − 1) + (1 − βl)M

cepst
q (l, n) , (8)

where the smoothing constants βl are chosen separately for the dif-
ferent quefrency bins l according to:

βl =

⎧⎪⎨
⎪⎩

βenv if l ∈ {0, ..., lenv} ,

βpitch if l = lpitch ,

βpeak if l ∈ {(lenv + 1), ..., K/2} \ {lpitch} .

(9)

The rationale behind this choice for βl is as follows: for the lower
bins l ∈ {0, ..., lenv}, the values ofMcepst

q (l, n) represent the spec-
tral envelope of the maskMq(k, n) [16]. As speech onsets go along
with a sudden rise in the spectral envelope, βenv should have a very
low value, resulting in a low smoothing, in order not to distort the
envelope. Likewise, if lpitch is the quefrency bin that represents the
regular structure of the pitch harmonics inMq(k, n) [16], we apply
a relatively low smoothing βpitch to this bin (l = lpitch). The cepstral
bins l ∈ {(lenv + 1), ..., K/2} \ {lpitch} represent the fine struc-
ture ofMq(k, n) that is not related to the pitch and cover, with high
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probability, the random unwanted peaks that lead to the harmonic
distortion. Therefore, we apply a strong smoothing βpeak(> βpitch)
to these coefficients. As the unwanted isolated random peaks rep-
resent a sporadic change of the fine structure of Mq(k, n), and as
they last only for a short duration, they are strongly affected by the
smoothing (8). Note that this smoothing does not affect the speech
information contained in the upper quefrency bins (apart from lpitch)
as such information is generally present for more than one frame and
are thus preserved despite the high value of βpeak.

For the frame n under consideration, we choose lpitch as the cep-
stral bin that satisfies

lpitch = argmax
l

{
Mcepst

q (l, n)
∣∣llow ≤ l ≤ lhigh

}
, (10)

which is a well-known method for computing the pitch frequency
from a cepstrum [16]. The search range

{
llow, lhigh

}
is selected so

that possible pitch frequencies between 70Hz and 500Hz may be
detected. Although the search in equation (10) only delivers mean-
ingful results in the presence of voiced speech, the signal energy
contained in the bin lpitch, otherwise, is comparably low so that
no audible side effects are perceivable from the lesser smoothing
βpitch < βpeak of that bin in the absence of voiced speech.

For bins l > K/2,M cepst
q (l, n) is determined by the symmetry

condition of the DFT:M cepst
q (l, n) = M

cepst
q (K − l, n). The final

smoothed spectral mask is obtained as:

Mq(k, n) = exp
(
DFT

{
M

cepst
q (l, n)

∣∣
l=0,...,K−1

})
, (11)

where the exponential function is applied element-wise. This smoo-
thed mask is then used to obtain the enhanced signal according to (6).

6. EVALUATION & DISCUSSION

The test data used to evaluate the proposed post-processor consists of
the individual separated signals from aQ = 2 source,M = 2micro-
phone, ICA based algorithm (according to [3]) operating on mixtures
recorded in an office room with a reverberation time T60 = 0.5s.
The time-domain signals were segmented into frames of length K
and weighted by a Hann window before transformation into the dis-
crete Fourier domain. The overlap between adjacent frames was set
to 50%. Table 1 summarizes the values of the remaining parameters
for the system used in the evaluation.

fs = 8 kHz lenv = 8 βenv = 0
K = 256 llow = 16 βpitch = 0.4
20 log

10
(γ) = −5dB lhigh = 120 βpeak = 0.8

Mmin = 0.1

Table 1. Parameter values for the implemented post-processing sys-
tem.

The proposed post-processing algorithm was evaluated via lis-
tening tests on eleven test-subjects, encompassing both ‘expert’ and
‘non-expert’ listeners. The test set consisted of 24 examples contain-
ing mixtures of male-male, male-female and female-female speak-
ers. For each example, the test subject was presented three audio
samples – the output of the ICA algorithm (without post process-
ing), the output after post processing the signals obtained from the
ICA by the binary masks as in equation (5) and, finally, the output of
the proposed post-processor (the masks of (5) smoothed as proposed
in Section 5). The test subject was then asked to select the best of
the three for each category:

1. quality of speech of the desired speaker,
2. interference suppression, and
3. overall impression.
The purpose of the listening test was to first confirm that the

post-processing using binary masks (5) improved interference sup-
pression and, secondly, to verify that the proposed method improved
the masks by removing disturbing musical noise without degrading
the high interference suppression, resulting in a better, overall ac-
ceptance. The results are presented in Figure 1.
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Fig. 1. Cumulative results of the listening test in terms of speech
quality (Speech), interference suppression (Background) and overall
impression (‘none’ indicates no post-processing).

Additionally, Figure 2 shows the spectra of the signals recov-
ered by the ICA, by the simple binary masks and by the proposed
post-filter. Note the profusion of isolated peaks in Figure 2 (b, top
and bottom) for the binary mask, and the corresponding version in
Figure 2 (c, top and bottom), obtained from the proposed approach –
where the peaks are successfully suppressed. Note also that the pro-
posed approach preserves the speech onsets and the pitch structure
in the recovered signals.

From the listening test results, it is apparent that a post-processing
(5) indeed reduces the amount of interference (Figure 1) – indicating
that it is useful to implement a mask-based post processor despite the
signals being reverberant. For the evaluation of the quality of speech,
most subjects opted for the signal with no post-processing as having
the best quality. This is because, due to masking and the threshold
γ, there is a slight distortion in the post-processed signal spectrum.
Note that this originates from the binary mask of (5) and not from the
proposed smoothing and could be dealt with by more sophisticated
masking approaches. However, the subjects did state that, at times,
they found it hard to distinguish between the speech quality afforded
by the proposed post-processor and that of ICA. This is reflected in
the relatively large number of ‘undecided’ votes. In terms of over-
all impression, the proposed method delivers the best performance –
indicating the merit of the approach.

7. CONCLUSIONS

In summary, the proposed post-filter, consisting of a binary mask
followed by a first-order recursive, temporal smoothing in the cep-
stral domain is effective in reducing cross-talk without the unwanted
and annoying side-effect of musical noise. Additionally, smooth-
ing in the cepstral domain makes it easier to preserve the spectral
characteristics of the target speaker while smoothing out the effects
of unwanted, random peaks in the spectrum. Thus, the proposed
post-processor provides a high interference suppression and, simul-
taneously, prevents musical noise. The listening tests corroborate
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(a) Output of the ICA algorithm.
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(b) Spectrum after binary masking.
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(c) Spectrum after smoothing masks.

Fig. 2. Spectra of the recovered signals before and after post-processing. Each row shows the spectrograms for one speaker.

our conclusions. Note that this method is not restricted to the post-
processing for source separation. In general, it lends itself readily
as a smoothing approach in cases where the disjointness property of
speech is used to compute time and frequency-variant gains for de-
sired speech enhancement. As an example, this approach could also
be used directly on mask-based separation approaches, or in noise
reduction algorithms [17]. However, for this specific case, we find
it best to use the masking approach in conjunction with the linear
algorithm, followed by the post filtering proposed here.
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