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ABSTRACT

We address the problem of instantaneous, underdetermined audio
source separation by time-frequency masking. Using oracle estima-
tors, we determine experimental upper performance bounds, by as-
suming that we have reference sources available, and that we know,
or have estimated, the mixing structure. Oracle estimation of four
musical sources from two-channel mixtures demonstrates a poten-
tial for SDR improvements of up to 12.7 dB, compared to semi-blind
methods. We also show that using adaptive cosine packet transforms,
rather than fixed-basis STFTs, can improve performance by up to
2.2 dB. Finally, by allowing more than one non-zero source coeffi-
cient per time-frequency index, improvements of up to 7.7 dB could
be possible.

Index Terms— Audio systems, Cosine transforms, Time-
frequency analysis

1. INTRODUCTION

The aim of blind source separation (BSS) is to recover a set of indi-
vidual sources from an observed mixture of those sources. Typically
we have little or no information on the sources themselves or the
mixing process. In this paper we consider the instantaneous case for
audio signals, which means that neither delays nor reverberations
occur in the mixing process. We construct the following model:

x = As (1)

where x = x(n) = [xi(n)]1≤i≤I represents an I-channel mixture
signal, s = s(n) = [si(n)]1≤j≤J is a vector of J source signals,
and 0 ≤ n < N is the discrete-time index. The mixing matrix is
A = [ai,j ]1≤i≤I,1≤j≤J , and has real, constant entries.

We are particularly interested in modelling two-channel audio
mixtures with more than two sources, because this can approximate
the panpotted mono1 mixing technique. Generally, mixtures of this
type, that is, when I < J , are called underdetermined. This case is
particularly challenging because even if we know or have estimated
A, standard matrix inversion techniques do not give a unique solu-
tion.

We take the time-frequency masking approach to try to solve
the problem [1]. Consider a linear, invertible transform, T , which
is specified by its basis, B = {φBγ }γ∈Γ, where Γ is an index set.
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1In this context, the word mono describes the sources, not the mixtures.

Then the transform coefficients of any signal y = y(n) are given by

T{y}(γ) = 〈y, φBγ 〉 =
PN−1

n=0 y(n)φBγ (n). After transformation by
T , Equation (1) assumes the following form:

[〈xj , φ
B
γ 〉]1≤i≤I = A[〈sj , φ

B
γ 〉]1≤j≤J . (2)

Usually, T represents the short-time Fourier transform (STFT) [1].
More recently, the application of the modified discrete cosine trans-
form (MDCT) [2] and the adaptive cosine packet (CP) transform [3,
4] has been explored.

Such transformations represent the sources in such a way that
the number of source coefficients, 〈sj , φ

B
γ 〉, which are non-zero at

each time-frequency index, γ, is relatively small, giving a sparse
representation [5]. The sources can then be estimated against certain
criteria which assign energy from the source coefficients in Equa-
tion (2) to the estimated sources. Inversion by T−1 follows. In this
paper, we assume that A is known or has been estimated. That is,
we study the semi-blind, rather than the blind, case of source sepa-
ration. In Section 2 we describe how oracle estimation techniques
can find experimental upper bounds for audio source separation per-
formance [6]. These methods determine the best possible source es-
timates that time-frequency masking can yield for a particular mix-
ture, according to some performance criterion.

It has previously been shown that using adaptive cosine packet
(CP) transforms, which use variably sized windows to try to capture
the time-varying nature of the source signals better, has the potential
to improve estimation performance compared to using fixed-basis
transforms such as the STFT or MDCT [4, 7]. Our aim is to develop
more performant oracle estimation methods for mixtures comprised
of harmonically overlapping sources, such as music, under the re-
laxed assumption that one or more non-zero sources are allowed per
time-frequency index (see Section 2). This extends previous work
on oracle estimation of adaptive CP transforms, which allow only
one active source per γ [7]. In Section 4, we compare results be-
tween semi-blind and oracle estimation, and show that the potential
improvements are significant.

2. TIME-FREQUENCY MASKING

Denote by J ′γ the assumed number of active (non-zero) source co-

efficients at γ. Then Jγ = {j : 〈sj , φ
B
γ 〉 �= 0} is the set of all J ′γ

sources contributing to [〈xi, φ
B
γ 〉]1≤i≤I , and is called the local ac-

tivity pattern at γ. Our mixing model then takes the following form

[〈xi, φ
B
γ 〉]1≤i≤I = AJγ [〈sj , φ

B
γ 〉]j∈Jγ (3)

where AJγ is the I × J ′γ submatrix of A formed by taking columns

Aj , and [〈sj , φ
B
γ 〉]j∈Jγ is formed by taking rows of [〈sj , φ

B
γ 〉]1≤j≤J ,
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whenever j ∈ Jγ . The global activity pattern is given by J =
{Jγ}γ∈Γ.

Let us assume that A is known, and that the number of active
sources at any time-frequency index is less than or equal to the num-
ber of mixtures (J ′γ ≤ I). Then Equation (3) reduces to an (over-
)determined mixture, and estimation of the sources is then possible
according to the following equation [3]:(

〈ŝj , φ
B
γ 〉 = 0 if j /∈ bJγ

[〈ŝj , φ
B
γ 〉]j∈ bJγ

= A+
bJγ
[〈xi, φ

B
γ 〉]1≤i≤I otherwise

(4)

where bJγ is an estimate of Jγ and A+
bJγ

denotes the (Moore-Penrose)

pseudoinverse of A
bJγ

. Time frequency masking can then be inter-

preted as the problem of estimating local activity patterns. (Efficient
estimation of Jγ for the J ′γ ≤ J case is currently an open problem.)

2.1. Semi-blind methods

In the case that J ′γ < I , we can express the mixture channels as

〈xi, φ
B
γ 〉 =

P
j∈J ′

γ
〈sj , φ

B
γ 〉+ νBγ , where νBγ is the sum of the inter-

fering sources with j /∈ Jγ , and modelled as Gaussian white noise.
This motivates us to estimate Jγ by minimising sums of squared
residuals [1, 8]:

e(x, A,J ,B) =
X
γ∈Γ

IX
i=1

 
〈xi, φ

B
γ 〉 −

JX
j=1

ai,j〈ŝj , φ
B
γ 〉
!2

, (5)

which depends implicitly on Equation (4), and yields maximum like-
lihood (ML) estimates of the active sources. An important special
case is when J ′γ = 1. Then we can derive the ML estimates [9,
pp. 657–661] and Equation (5) in an equivalent way by modelling
the singleton activity set with a uniform prior probability, Pr(Jγ =
{j}) = 1

J
, 1 ≤ j ≤ J [3].

In the J ′γ ≤ I case, Equation (5) is no longer motivated in the
same way as before, and so we define a new semi-blind criterion.
Assume that the coefficients 〈sj , φ

B
γ 〉 follow a Laplacian prior dis-

tribution, independently and identically for all j and γ. Then we
find the maximum a posteriori (MAP) estimate of the sources by
minimising

e′(x, A,J ,B) =
JX

j=1

|〈ŝj , φ
B
γ 〉|. (6)

which depends implicitly on Equation (4). This is one of the usual
approaches to sparse source separation [5]. However, our experi-
ments in Section 4 consider only cases in which I = 2, and so we
can determine ŝ according to Equation (6) using an efficient, geo-
metrically motivated algorithm [10].

2.2. Oracle methods

Oracle estimators determine those J ′γ and bJγ which give the best
possible separation performance for each mixture, by optimising
against some criterion [6]. Here we follow the approach and nota-
tion of [7]. These techniques require us to know the original sources,
s, and the mixing system, A. Oracle estimates allow us to judge
the difficulty of separating the sources from a given mixture, and to
gain insight into the upper performance bounds of our class of sep-
aration algorithms, subject to J ′γ ≤ I . Because their computation
depends on knowing the reference source signals, oracle estimators
are very useful for evaluating algorithms, rather than for practical
(semi-)blind source separation.

The oracle estimate of s is that ŝ which minimises a distortion
measure such as

d(s, x, A,J ,B) =
N−1X
n=0

JX
j=1

(ŝj(n)− sj(n))
2 . (7)

The advantages of defining d in this way are that (a) minimising it
is equivalent to maximising the signal to distortion ratio (SDR)

SDR = 10 log10

PN−1
n=0

PJ
j=1 (sj(n))

2

d(s, x, A,J ,B) , (8)

with which we shall evaluate the all methods; and that (b) it satis-
fies additivity constraints required for computing oracle bases (see
Section 3).

2.3. Oracle masks for orthonormal transforms

For signals represented by an orthonormal transform, Equation (7)
is equal to the following [7]:

d(s, x, A,J ,B) =
X
γ∈Γ

JX
j=1

“
〈ŝj , φ

B
γ 〉 − 〈sj , φ

B
γ 〉
”2

. (9)

It is clear that minimising d(s, x, A,J ,B) is equivalent to minimis-
ing at each γ independently, by computing oracle local activity pat-
terns: bJ ora

γ = argmin
Jγ∈Pγ

JX
j=1

“
〈ŝj , φ

B
γ 〉 − 〈sj , φ

B
γ 〉
”2

(10)

where 〈ŝj , φ
B
γ 〉 on the right hand side is given by Equation (4), and

Pγ the set of all possible activity patterns, subject to J ′γ . If J ′γ is

small then an exhaustive search over all bJγ ∈ Pγ is computationally
feasible.

2.4. Oracle masks for non-orthogonal transforms

The STFT is often used in time-frequency masking, but because
it is non-orthogonal, the equivalence of Equations (7) and (9) no
longer holds. The optimal oracle activity patterns must be deter-
mined jointly by a full combinatorial search over all time-frequency
indices, γ. This is computationally infeasible for any realistic sig-
nal, so we can only compute near-optimal oracle activity patterns
by minimising d(s, x, A,J ,B) at each γ separately, according to
Equations (9) and (10).

3. ADAPTIVE LOCAL COSINE BASES

Adaptive cosine packet (CP) transforms partition the signal with
overlapping sine windows of variable length [11]. Such an orthonor-
mal decomposition is often sparser than fixed-basis representations
(such as STFT or MDCT), because it gives longer windows over in-
tervals requiring fine frequency resolution, at the expense of coarser
time resolution, and shorter windows over intervals with broadband
frequency content, giving finer time resolution. It has been shown
that, in some cases, this can improve separation performance [4, 7].

Consider a dictionary of possible CP bases, D = {B}. We
represent D as a complete binary tree with depth D. Each of the
2D+1 − 1 nodes represents a block in the windowed signal, and the
shortest possible block size is given by Kmin = 2−DN , correspond-
ing to a node at depth D. The aim is to choose the basis which is best
adapted to the time-varying nature of the signal, by minimising some
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specified criterion or cost function (Equations (5), (6), and (9)). Such
a basis, B, is called the best orthogonal basis. Fortunately there exist
efficient algorithms which take advantage of the tree representation
of D and determine the best basis in O(N log2 N) operations, and
an exhaustive search is not necessary [12].

There are conceptually two steps in using adaptive CP trans-
forms for time-frequency masking. Firstly, we determine the best
basis B in which to decompose the signal, and set Bsb = B or
Bora = B. This involves computing all possible J . Secondly, we
estimate the global activity pattern, J , in the best basis B, and setbJ sb = bJ or bJ ora = bJ accordingly. This choice of bJ minimises the
cost of representing s in the best basis so found.

The best basis in a semi-blind context is estimated according to
the same criterion as the semi-blind activity patterns. As we stated
above, this is because we want to choose the basis which determines
the semi-blind activity pattern with minimum cost. We select the ba-
sis which minimises the cost given by Equation (5) for the J ′γ < I
case, and Equation (6) for the J ′γ = I case. These cost functions sat-
isfy additivity constraints required by the best basis algorithm [12].
The resulting basis, Bsb, is optimised for the estimated the semi-blind

activity pattern bJ sb.

Estimation of the oracle best basis is very similar to that of the
semi-blind best basis. The only differences are that the cost to min-
imise is given by Equation (9) and that s must be known. This basis,
Bora, is optimised for estimation of the oracle activity pattern J ora.

In previous work, oracle estimators were developed for adaptive
CP transforms for binary masking (J ′γ = 1) [7]. It can give good
results, especially for speech signals [1], but for realistic mixtures
with harmonically related sources, such as music, there will be more
than one active active source at (almost) all γ. The formulation here
thus allows J ′γ ≤ 2, we extend the J ′γ = 1 framework. In Section 5,
we show that this significantly increases performance.

4. EXPERIMENTS

We test our algorithms on eight different pieces of music by various
artists, each one comprised of J = 4 sources. As we had access to
the original multitracked data, we were able to synthesise instanta-
neous mixtures, with I = 2, to simulate a panpotted mono mixing
process. The pitched sources were harmonically related so that over-
lapping harmonics between different sources were expected. Each
source had a sample rate of 44.1 kHz, with a resolution of 16 bits
per sample. Extracts of length 217 samples (≈ 3.0 s) were taken
from each source.

We generated ten random mixing matrices according to

A(r) =

 
cos θ

(r)
1 cos θ

(r)
2 cos θ

(r)
3 cos θ

(r)
4

sin θ
(r)
1 sin θ

(r)
2 sin θ

(r)
3 sin θ

(r)
4

!
, (11)

where 1 ≤ r ≤ 10. Each θ
(r)
j was selected randomly, independently

and uniformly distributed over [0, π/2]. This makes for 10×8 = 80
mixtures.

For experiments on semi-blind criteria, we tested the J ′γ = 1
and J ′γ = 2 cases. For oracle criteria, we used J ′γ = 1, J ′γ = 2
and J ′γ ≤ 2. For fixed-basis transforms, we tested the STFT and
MDCT, with block lengths ranging in powers of two from K = 25

(≈ 0.7 ms) to K = 217 (≈ 3.0 s). For the CP transforms, we
tested dictionaries with shortest block size ranging from Kmin = 5
(D = 12) to Kmin = 17 (D = 0), to select the best basis. For each
combination of transform (STFT, MDCT or CP), criterion (Equa-
tions (5), (6), and (9)), block length (K or Kmin), and assumed J ′γ ,
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Fig. 1. Mean oracle performance for J ′γ = 1 (top plot), J ′γ = 2
(middle plot) and J ′γ ≤ 2 (bottom plot), with STFT (dotted line),
MDCT (dashed-dotted line) and CP (solid line). The horizontal axes
indicate the block size, K, for STFT and MDCT, and the shortest
block size, Kmin, for CP transforms.

we estimated 80× 4 = 320 sources and computed the mean of their
SDR measures. Results are presented in Figure 1 and Table 1.

5. DISCUSSION

The oracle methods perform significantly better than the semi-blind
methods, because they use reference sources to find (near-)optimal
source estimates with respect to the SDR. In the J ′γ = 1 case, this
improvement ranges from 2.5 dB (STFT) to 4.7 dB (CP). The im-
provement is even larger when J ′γ = 2, and ranges from 10.6 dB
(STFT) to 12.7 dB (CP). The obvious conclusion we can draw from
this is that by developing more performant (semi-)blind estimation
criteria (to improve upon Equations 5 and 6), we should be able to
estimate more accurately the Jγ and obtain significant performance
increases.

For the oracle estimators, for each of the J ′γ = 1, J ′γ = 2 and
J ′γ ≤ 2 cases, CP gives the highest mean SDR, followed in de-
creasing order by MDCT and STFT. Firstly, let us note that the im-
provement due to using the adaptive CP transforms, compared to the
STFT, ranges from 1.6 dB (J ′γ = 2) to 2.2 dB (J ′γ ≤ 2). Secondly,
we note that the performance increase due to relaxing the constraints
on J ′γ is even larger. Comparing the J ′γ = 1 and J ′γ ≤ 2 cases, we
can see that these improvements are 7.2 dB (STFT), 7.5 dB (MDCT)
and 7.7 dB (CP). These results both reinforce and extend previous
results, in which only the J ′γ = 1 case was considered for oracle
estimation of adaptive CP transforms [7].

Although, for the oracle methods, the performance increase by
using adaptive CP transforms is significant, much greater improve-
ments can be made by going from J ′γ = 1 to J ′γ ≤ 2 regardless
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Crit. J ′γ Trans. K Kmin Mean SDR [dB]

sb

J ′γ = 1
STFT 214 - 5.8

MDCT 211 - 5.0
CP - 211 5.3

J ′γ = 2
STFT 213 - 5.4

MDCT 213 - 4.9
CP - 212 4.9

ora

J ′γ = 1
STFT 213 - 8.3

MDCT 212 - 9.2
CP - 211 10.0

J ′γ = 2
STFT 213 - 16.0

MDCT 211 - 16.6
CP - 210 17.6

J ′γ ≤ 2
STFT 213 - 15.5

MDCT 211 - 16.7
CP - 211 17.7

Table 1. Best mean SDR [dB] for semi-blind and oracle criteria.

of the transform. This echoes the performance improvements seen
by comparing semi-blind and oracle results above. Note that for
the MDCT and CP transforms, setting J ′γ ≤ 2 gives the best mean
SDR, followed in decreasing order by setting J ′γ = 2 and finally

J ′γ = 1.2 However, the performance increase seen by comparing the
J ′γ = 2 and J ′γ ≤ 2 cases for the MDCT and CP transforms is rela-
tively small (0.1 dB). This indicates that there are relatively few γ for
which the oracle estimators determined a local activity pattern with
J ′γ = 1, so that even though our transforms give sparse representa-
tions, there is still overlap of harmonically related sources. It would
therefore be interesting to examine other adaptive transforms which
attempt to make the J ′γ = 1 case more realistic, so that (semi-)blind
estimation criteria based on binary masking could be alternatively
used.

From Figure 1, we see that for the fixed-basis transforms, the
mean SDR decreases significantly as K decreases, and that for small
values Kmin, the CP-based methods perform much better than the
fixed basis methods. The reason is that the adaptive CP transforms
allow for longer block sizes over those segments of the signal for
which a lower distortion is attained, whereas the fixed-basis trans-
forms are restricted to uniformly small block sizes.

Interestingly, for the semi-blind methods, using the STFT gives
the best performance: 5.8 dB (J ′γ = 1) and 5.4 dB (J ′γ = 2), and the
mean SDR for all semi-blind methods is lower when we set J ′γ = 2,
than when J ′γ = 1. This is slightly counterintuitive, and indicates
that it is important to verify the applicability of the MAP-based es-
timation criterion (Equation (6)) to sources with significant amounts
of harmonic overlap.

6. CONCLUSION

In this paper, we formulated semi-blind and oracle methods for source
separation by time-frequency masking, based on STFT, MDCT and
adaptive CP transforms. Oracle results showed that by allowing
more than one active source per time-frequency index, by making
good estimations of the activity patterns, and by adapting the CP
bases to the signal structures, adaptive CP methods have the po-
tential to perform significantly better than fixed-basis methods. A

2This trend does not hold strictly for STFT-based methods because esti-
mators for non-orthogonal transforms are near-optimal, rather than optimal.
A difference of several fractions of a decibel could then be expected.

significant problem for the future is to search for (semi-)blind meth-
ods which can approach the potential performance gain indicated by
the oracle methods, particularly for the methods based on adaptive
transforms.
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