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ABSTRACT

In this paper we address the application of single sensor source sep-

aration techniques to mixtures of speech and music. Three strategies

for source modeling are presented, namely Gaussian Scaled Mix-

ture Models (GSMM), Autoregressive (AR) models and Amplitude

Factor (AF). The common ingredient to the methods is the use of

a codebook containing elementary spectral shapes to represent non-

stationary signals, and to handle separately spectral shape and am-

plitude information. We propose a new system that employs separate

models for the speech and music signals. The speech signal proves

to be best modeled with the AR-based codebook, while the music

signal is best modeled with the AF-based codebook. Experimental

results demonstrate the improved performance of the proposed ap-

proach for speech/music separation in some evaluation criteria.

Index Terms— Single sensor source separation, Gaussian mix-

ture models, spectral estimation, autoregressive model.

1. INTRODUCTION

Single sensor source separation is a challenging research topic

that attracts much interest in many fields including audio pro-

cessing, medical imaging, and communication. In audio, at-

tempts to solve this task were proposed in the context of

Computational Auditory Scene Analysis (CASA) [1] or bi-

nary masking techniques [2]. Other approaches involve var-

ious techniques and models such as dual Kalman filters [3],

Independent Component Analysis (ICA) [4], sparse decom-

positions [5] or Nonnegative Matrix Factorization (NMF) [6].

We here consider separation techniques embedded in a prob-

abilistic Bayesian framework. In this context, codebook ap-

proaches have recently been successfully employed [7]. In

this paper we consider three different codebook-based strate-

gies, namely Gaussian Scaled Mixture Models (GSMM), Au-
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toregressive (AR) models and Amplitude Factor (AF) models.

The methods are described and compared in Section 2, and

then evaluated in Section 3 on speech and piano mixtures.

This section also describes an hybrid approach, a combina-

tion of two of the latter techniques, in which speech is mod-

eled by an AR-based codebook, while AF-based codebook is

employed for the background music. Finally Section 4 gives

conclusions and directions for future work.

2. SINGLE SENSOR SOURCE SEPARATION

2.1. Problem Formulation

Given an observed signal x, which is the mixture of two

sources s1 and s2, the source separation problem consists of

finding estimates for s1 and s2 from x. Algorithms presented

in this work are applied in the Short Time Fourier Transform

(STFT) domain. Denote by X(f, t) the STFT of x, where

t represents the frame index and f the frequency-bin index.

Due to linearity of the STFT, we have :

X(f, t) = S1(f, t) + S2(f, t) . (1)

We here aim at deriving estimators Ŝ1(t, f) and Ŝ2(t, f).1

Codebook approaches rely on the assumption that each source

can be represented by a given “dictionary” representative of

the nature of the signal. They usually work in two stages :

i) An offline learning step builds the codebooks from

training data;
ii) An estimation step finds the source parameters that best

explain the mixture from the given codebook(s).

In the following the codebooks representative of the first

and second source are noted φ1 = {φ1,k}k=1,...K1 and

φ2 = {φ2,k}k=1,...,K2 respectively, where K1 and K2 are

1If only two sources are considered here, extension to n sources is

straightforward.
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the codebooks lengths. The nature of the codebooks is source

dependent. As will be detailed in the next section, the GSMM

and AF-based codebooks contain variance parameters (under

Gaussian modeling), while the AR-based codebook contains

Linear Predictive Coefficients (LPC). As for the reconstruc-

tion of the source signals given the estimated representation

parameters, we will describe approaches either based on Max-

imum A Posteriori (MAP) or Minimum Mean Square Error

(MMSE) principles.

2.2. GSMM-based source separation

The source separation technique presented in [7] suggests the

use of GSMMs to model the sources statistical behavior. In

this case, the codebook is simply formed by Gaussian Mix-

ture Models (GMMs) parameters trained from sample data

representative of the sources. The GSMM incorporates a sup-

plementary scale parameter which aims at better taking into

account non-stationarity of the sources. Each component k

of source i is identified by a diagonal covariance matrix Σi,k

and a state prior probability ωi,k, so that in this case we have

φi,k = {Σi,k, ωi,k}. The GSMM model is then simply defined

by :

p(Si(:, t)|{φi,k}k) =
Ki∑
k=1

ωi,k N (Si(:, t)|0, ai,k(t)Σi,k)

(2)

where
∑Ki

k=1 ωi,k = 1, ai,k(t) is a time-varying amplitude

factor and Si(:, t) denotes the vector of frequency coefficients

of source i at frame t. Though GSMMs are a straightforward

extension of GMMs, they are unfortunately untractable due

to the added amplitude factors. [7] suggests to estimate these

amplitude factors pairwise, in a Maximum Likelihood (ML)

sense, as follows :

γa1,k,a2,q
(t) = P (φ1,k, φ2,q|X(:, t), a1,k(t), a2,q(t))

â1,k(t), â2,q(t) = max
a1,k,a2,q

{γa1,k,a2,q
(t)} (3)

The source STFTs can then be estimated either in a 1-Best

hard decision MMSE (H-MMSE) or MMSE sense, as fol-

lows.

H-MMSE estimator :

Ŝi(f, t) =
âi,k∗σ2

i,k∗(f)

â1,k∗σ2
1,k∗(f) + â2,q∗σ2

2,q∗(f)
X(f, t) (4)

where (k∗, q∗) = argmax
(k,q)

{γâ1,k,â2,q
(t)}.

MMSE estimator :

Ŝi(f, t) =
X
k,q

γâ1,k,â2,q (t)
âi,kσ2

i,k(f)

â1,kσ2
1,k(f) + â2,qσ2

2,q(f)
X(f, t)

(5)

Note that since the covariance matrices are assumed diagonal,

conditionally on the selected state, separation is performed

independently in each frequency bin.

2.3. AR-based source separation

Spectral envelopes of speech signals in the STFT domain

are efficiently characterized by AR models, which have been

used for enhancement in [8, 9]. Many earlier methods for

speech enhancement assume that the interfering signal is

quasi-stationary, which restricts their usage for non-stationary

environments, such as music interferences. Srinivasan and

al. [8, 9] suggest to represent the speech and interference

signals by using codebooks of AR processes. The prede-

fined codebooks now contain the linear prediction coeffi-

cients of the AR processes, noted φ1 = {φ1,k}k=1,...,K1 and

φ2 = {φ2,k}k=1,...,K2 (φi,k is now a vector of length equal to

the AR order).

2.3.1. ML approach

[8] proposes a source separation approach based on the ML.
The goal is to find the most probable pair {φ1,k∗ , φ2,q∗} for a
given observation, with

(k∗, q∗) =

argmax
k,q

j
max

λ1,k(t),λ2,q(t)
{p(x(:, t)|φ1,k, φ2,q; λ1,k(t), λ2,q(t))}

ff

(6)

where x(:, t) denotes frame t of mixture x (this time in the

time domain) and λ1,k(t), λ2,k(t) are the frame-varying vari-

ances of the AR processes describing each source. In [8] a

method is proposed to estimate the excitation variances pair-

wise. Like previously, once the optimal pair is found, source

separation can be achieved through Wiener filtering on the

given observation x(:, t).

2.3.2. MMSE approach

[9] proposes an MMSE estimation approach for separation.

In a Bayesian setting, the LPC and excitation variances are

now considered as random variables, which can be given prior

distributions to reflect a priori knowledge. Denoting by θ =
{φ1, φ2, {λ1(t)}t, {λ2(t)}t}, the MMSE estimator of θ is

θ̂ = E[θ|x] =
1

p(x)

∫
θ

θ p(x|θ)p(θ)dθ (7)

We take p(θ) = p(φ1) p(φ2) p({λ1(t)}t) p({λ2(t)}t). [9]
then shows that the likelihood function p(x|θ) decays rapidly
when deviating from the true excitation variances. This gives
ground to approximating the true excitation variances by their
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ML estimates, (7) can then be rewritten as

θ̂ =
1

p(x)

Z
φ1,φ2

[φ1, φ2] p(x|φ1, φ2; λ̂
ML
1 , λ̂ML

2 )

× p(φ1)p(λ̂ML
1 )p(φ2)p(λ̂ML

2 )dφ1dφ2 (8)

where λ̂ML
1 and λ̂ML

2 are the ML estimates of the excita-

tion variances. We use codebook representatives as entries in

integration (8).

Assuming that they are uniformly distributed, θ̂ is given
by [9] :

θ̂ =
1

K1K2

K1X
k=1

K2X
q=1

θkq

p(x|φ1,k, φ2,q; λ
ML
1,k , λML

2,q )

p(x)

× p(λML
1,k )p(λML

2,q )

(9)

where θkq = [φ1,k, φ2,q, λ̂
ML
1,k , λ̂ML

2,q ]. Given two fixed AR

codebooks, (9) allows an MMSE estimation of AR processes

jointly associated to source 1 and source 2. Once θ̂ is known,

we can use Wiener filtering for the separation stage.

2.4. Amplitude Factor source separation

This source separation technique described in [10] proposes
to model each STFT frame of each source as a sum of ele-
mentary components modeled as zero-mean complex Gaus-
sian distribution with known Power Spectral Density (PSD),
also referred to as spectral shape, and scaled by amplitude
factors. More precisely, each source STFT is modeled as

Si(f, t) =

KiX
k=1

p
ai,k(t) · Ei,k(f, t) (10)

where Ei,k(f, t) ∼ Nc(0, σ2
k(f)). The representatives of the

codebooks are now φi,k = [σ2
i,k(f1), . . . , σ2

i,k(fN )]T .

This model is well adapted to the complexity of musical

sources, as it explicitly represents the signal as linear com-

bination of more simple components, with various spectral

shapes.

Given the codebooks, the separation algorithm based on

this model consists of two steps, as follows :

i) Compute of the amplitude parameters {ai,k(t)} in an

ML sense; this is tantamount to performing a nonneg-

ative expansion of |X(f, t)|2 onto the basis formed by

the union of the codebooks,

ii) Given the estimated {ai,k(t)}, estimate each source in
an MMSE sense through Wiener filtering :

Ŝi(f, t) =

PKi
k=1 âi,kσ2

i,k(f)PK1
k=1 â1,kσ2

1,k(f) +
PK2

k=1 â2,kσ2
2,k(f)

X(f, t)

(11)

2.5. Learning the Codebooks

We assume that we have some clean training samples of each

source. These training excerpts do not need to be identical

to the source signals in the observed mixture, but we assume

that they are representatives of the sources. We estimate the

codebooks on the training samples according to the models

of previously presented separation strategies :

Model of Section 2.2: the Expectation-Maximization algo-

rithm [11] is used to estimate {Σi,k, ωi,k}Ki

k=1,

Model of Section 2.3: the generalized Lloyd algorithm is

used to learn the LPC coefficients [12],

Model of Section 2.4: the generalized Lloyd algorithm is ap-

plied to the short-term power spectra of the training samples.

3. RESULTS

3.1. Evaluation criteria

We used the standard Source to Distortion Ratio (SDR), the

Signal to Interference Ratio (SIR) and the Signal to Artifacts

Ratio (SAR) described in [13]. In short, the SDR provides

an overall separation performance criterion, while the SIR

only measures the level of residual interference and the SAR

measures the level of artifacts in each estimated source. The

higher are the ratios, the better is the quality of the estimation.

Note that in underdetermined source separation, the SDR is

usually driven by the amount of artifacts in the source esti-

mates.

3.2. Experimental setup and results

Audio samples are available at [14]. The evaluation task con-

sists of unmixing a mixture of speech and piano. The signals

are sampled at 16 kHz and the STFT is calculated using a

Hamming window of 512 samples length (32 ms) with 50%
overlap between consecutive frames.

For the learning step we used piano and speech segments

that were 10 minutes long. The observed signals are obtained

from mixtures of 25 s long test signals. The data set consists

of speech segments taken from the TIMIT database and piano

segments acquired through the Web. Results are shown in

Table 1. All methods use codebook with 128 components.

When observing the simulation results, one can see that

no single algorithm is superior for all criteria. However, the

AR/MMSE performs well when separating the speech. An-

other observation is that the AR model yields low SIR results

for the piano source; this can be explained by the fact that AR

processes are not very adequate for representing piano sig-

nals. We thus propose to combine the AF and AR based meth-
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ods : an AF-based codebook is used for the piano while an

AR-based codebook is used for speech. The results with this

approach, shown in Table 1, show an enhancement in perfor-

mance in one evaluation criteria (speech SIR) while the other

criteria stay akin to those obtained with the best-performing

systems.

Table 1. SIR/SDR/SAR Measures (in dB) for GMM/AR/Amplitude Factor

and Amplitude Factor + AR Based Methods.

GSMM AR Ampl. AM +

H-MMSE MMSE ML MMSE Factor AR

S
p
ee

ch SDR 5.4 4.8 4.8 3.9 4.2 4.1

SIR 3.9 4.1 4.5 2.2 4.4 4.6

SAR 2.4 2.7 2.0 4.7 3.5 3.8

M
u
si

c SDR 3.0 2.8 2.5 2.1 2.6 2.4

SIR 10.8 11.1 7.1 5.0 10.4 10.8

SAR 3.2 3.5 7.6 12.9 5.0 5.3

4. CONCLUSION

We have presented in this paper three codebook approaches

for single channel source separation. Each codebook un-

derlies different models for the sources, i.e addresses dif-

ferent features of the sources. The above separation results

show that AR-based model efficiently captures speech fea-

tures, while the AF-based model is good at representing mu-

sic because of its additive nature (a complex music signal is

represented as a sum of simpler elementary components). Op-

positely, the GSMM assumes in its conception that the audio

signal is exclusively in one state or another, which intuitively

does not best explain music. The separation results presented

in this paper also tend to corroborate this fact.

It is worthwhile noting that the above methods rely on the

assumptions that sources are continuously active in all time

frames. This is generally incorrect for audio signals, and we

will try in our future work to use source presence probabil-

ity estimation in the separation process. The separation al-

gorithms define the posterior probabilities and gain factors of

each pair based on the entire frequency range. This causes nu-

merical instabilities and does not take into consideration local

features of the sources, e.g., for speech signals the lower fre-

quencies may contain most of the energy. Another aspect of

our future work will consist in adding perceptual frequency

weighting in the expansion coefficient estimation.

5. REFERENCES

[1] D. L. Wang and G. J. Brown, “Separation of speech from inter-

fering sounds using oscillatory correlation,” IEEE Trans. Neu-
ral Networks, vol. 10, pp. 684–697, Sep. 1999.

[2] S. T. Roweis, “One microphone source separation,” Advances
in Neural Information Processing Systems, vol. 13, pp. 793–

799, 2000.

[3] E. A. Wan and A. T. Nelson, “Neural dual extended Kalman

filtering: Applications in speech enhancement and monaural

blind signal separation,” in IEEE Workshop on Neural Net-
works and Signal Processing, Amelia Island, FL, USA, 1997,

pp. 466–475.

[4] G.-J. Jang and T.-W. Lee, “A probabilistic approach to single

channel source separation,” Advances in Neural Information
Processing Systems, vol. 15, 2003.

[5] B. A. Pearlmutter and A. M. Zador, “Monaural source separa-

tion using spectral cues,” in Proc. 5th International Conference
on Independent Component Analysis and Blind Source Separa-
tion (ICA’04), Granada, Spain, Sep. 2004.

[6] T. Virtanen, “Sound source separation using sparse coding with

temporal continuity objective,” in International Computer Mu-
sic Conference (ICMC’03), Singapore, Sep. 2003.

[7] L. Benaroya, F. Bimbot, and R. Gribonval., “Audio source sep-

aration with a single sensor,” IEEE Trans. Audio, Speech and
Language Processing, vol. 14, no. 1, pp. 191–199, Jan. 2006.

[8] S. Srinivasan, J. Samuelsson, and W. B. Kleijn, “Codebook

driven short-term predictor parameter estimation for speech en-

hancement,” IEEE Trans. Audio, Speech and Language Pro-
cessing, vol. 14, no. 1, pp. 163–176, Jan. 2006.

[9] ——, “Codebook-based Bayesian speech enhancement,” in

Proc. IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP’05), Philadelphia, USA, March

2005, pp. 1077–1080.

[10] L. Benaroya, R. Gribonval, and F. Bimbot, “Non negative

sparse representation for Wiener based source separation with

a single sensor,” in Proc. IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP’03), Hong

Kong, 2003, pp. 613–616.

[11] A. Dempster, N. Laird, and D. Rubin, “Maximum likelihood

from incomplete data via the EM algorithm,” Journal of the
Royal Statistical Society. Series B., vol. 39, pp. 1–38, 1977.

[12] K. K. Paliwal and W. B. Kleijn, “Quantization of lpc parame-

ters,” in Speech Coding and Synthesis, W. B. Kleijn and K. K.

Paliwal, Eds. Elsevier, 1995, pp. 433–466.

[13] R. Gribonval, L. Benaroya, E. Vincent, and C. Févotte, “Pro-

posals for performance measurement in source separation,” in

Proc. 4th Symposium on Independent Component Analysis and
Blind Source Separation (ICA’03), Nara, Japan, Apr. 2003.

[14] http://persos.mist-technologies.com/∼rblouet/.

40


