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ABSTRACT

We propose a new approach to underdetermined Blind Source

Separation (BSS) using sparse decomposition over monochan-

nel dictionary atoms and compare it to multichannel dictio-

nary approaches. We show that the new approach is eas-

ily extended to any single channel decomposition method

and allows for faster computation of algorithms such as the

Bounded Error Subset Selection (BESS) because of the re-

duced dimension of the search space. Experimental results on

Matching Pursuit (MP) and BESS algorithms show that our

method can give better Signal to Interference Ratio perfor-

mance than pursuit methods based on multichannel dictionary

atoms.

Index Terms— Underdetermined Blind Source Separa-

tion, Sparse Decomposition, Bounded Error Subset Selection

1. INTRODUCTION

In the blind source separation (BSS) problem, we have mix-

tures of several source signals and the goal is to separate them

with as little prior information as possible, hence the term

blind. In this work, we study the instantaneous underdeter-

mined BSS case, where we have more sources than mixtures.

We are concerned with separating mixtures of speech signals

when the mixing matrix and number of underlying sources

are unknown. This problem is ill-defined and its solution re-

quires some additional assumptions compared to its overde-

termined counterpart. The difficulty of the underdetermined

setup can be somewhat alleviated if there exists a represen-

tation wherein all the sources are rarely simultaneously ac-

tive, which entails finding a representation where the sources

are sparse. Some authors have shown that speech signals

are sparser in the time-frequency than in the time domain

[1], and that there exists several other representations such as

wavelets packets, where different degrees of sparsity can be

obtained. It has been shown that better separation can indeed

be achieved by exploiting such sparsity [2].

In this paper, we investigate methods for performing BSS

using overcomplete dictionaries. The fundamental success of

the separation depends on two factors, namely the type of

dictionary used and the type of decomposition method em-

ployed. In [3], we studied dictionary design methods, and

showed the performance improvement good dictionaries of-

fer. In this paper, we introduce a new approach to sparse de-

composition (SD) for multichannel BSS. Commonly known

SD algorithms like Matching Pursuit (MP) [4], Basis Pursuit

(BP) [5], or Bounded Error Subset Selection (BESS) [6] were

designed for single channel problems and cannot always be

directly applied to multichannel data. One popular approach

to the multichannel BSS is to use MP over so called mul-

tichannel dictionaries[7], a method hard to extend to BP or

BESS because of the prohibitive cost of the expanded search

space. In this work, we propose an algorithm that can easily

be combined with most single channel decompositions avail-

able in the literature.

Our proposed method searches the best dictionary atoms

that can represent a linear combination of the mixtures, and

use these atoms to find a representation of each mixture.

Because of the flexibility of our approach, we can also in-

vestigate how well different SD algorithms and their cor-

responding formulations recover the underlying sparsity of

the sources. We combine our method with a single channel

Matching Pursuit and BESS and compare their performance

with the Matching Pursuit with multichannel dictionary for

a 2 channel case[7]. In section 2, we give a mathematical

description of the problem and an explanation of how spar-

sity is used in source separation, in section 3 we describe

the motivation behind our approach and give a description

of our proposed algorithm. In section 4, we compare the

performance improvement of our approach with a class of

multichannel decomposition methods.

2. MIXING MODEL AND SPARSITY

In this section, we formulate the instantaneous mixing model

for underdetermined Blind Source Separation. Given M mix-

tures of N sound sources such that M ≤ N , our goal is to

recover the underlying sources up to a scale factor. For a data

frame of T samples, we can represent the mixture X , as an

M×T matrix which is the result of the product of an unknown
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mixing matrix, A and the N × T source matrix S. Matrix A
is an M × N matrix with each column corresponding to the

direction of arrival of one source. Without loss of generality,

we assume that 2 mixtures and 3 sources are available. The

mth mixture can be represented as follows,

xm =
N∑

n=1

am,nsn, (1)

where sn is vector corresponding to the nth source, and am,n

corresponds to the (m, n)th entry of matrix A. We can see

that for M < N , we have fewer equations than unknowns.

If we assume that only the nth source is active, we find

that the ratio x1 to x2 is the ratio of the mixing matrix column,

a1,n/a2,n. In fact, if the sources are sufficiently sparse such

that they never overlap, a scatter plot of x1 against x2 will re-

veal 3 clear lines, whose gradients corresponds to a1,n/a2,n.

The points on each line belong to only one source, and can be

separated. Evidently, in the time domain, the sources are not

sparse enough for such separation to be done. However, sev-

eral authors have found that sound signals exhibits very high

sparsity in alternative representations such as time-frequency

[1], and have successfully exploited this in algorithms such as

DUET [8]. We now extend the above model for overcomplete

dictionaries.

Given an overcomplete dictionary, D = {dk}K
k=1, such

that each atom dk is a T × 1 vector and K � T , we can

represent the nth source vector as,

sn =
K∑

k=1

cn,kdk, (2)

where cn,k is the coefficient associated to the kth dictionary

atom. Subsequently, we can represent the mixture signals in

terms of the source signals, dictionary atoms, mixing matrix

columns and associated coefficients. The resulting represen-

tation is,

xm =
N∑

n=1

K∑

k=1

am,ncn,kdk. (3)

The representation in eq. (2) is not unique and some sparse

decomposition algorithm can be used to find a representation

with few non-zero coefficients.

3. MULTICHANNEL DECOMPOSITIONS

3.1. Sparse Decomposition for Multichannel data

For the purposes of multichannel BSS, we seek a represen-

tation for each mixture such that the sources are as sparse

as possible. However, the authors of [3] have found that the

independent decomposition of the mixtures result in repre-

sentations where the mixtures do not always share the same

dictionary elements. Under these conditions, it is not possi-

ble to separate the sources. The authors of [7] have proposed

the use of multichannel dictionary atoms in conjuction with

a Matching Pursuit type of algorithm. At each iteration, this

method simultaneously decomposes all the mixtures over the

same dictionary atom and finds the atom that is best corre-

lated to all the mixtures. For the two channel case, we refer to

this as the MP with stereo dictionary. This idea was also ex-

tended to directional dictionaries where andk is the dictionary

atom in the direction of the nth column of the mixing matrix.

For both stereo dictionary and the directional extension, the

mixtures will share the same dictionary atoms and standard

separation methods can be applied to the coefficients. How-

ever, the search space for multichannel dictionaries is larger

than for single channel dictionaries. We find that these meth-

ods are not always easily extended to all sparse decomposi-

tion methods, in part due to the higher complexity of a larger

search space, which gets worse as the dimension of the prob-

lem increases.

3.2. Proposed Method Using Monochannel Dictionaries

One can think of the problem of finding the best representa-

tion for source separation as identifying a subset of dictionary

atoms common to both mixtures where the underlying sources

live disjointly. If such a subset was known, the mixtures’ rep-

resentation could be easily found by least square approxima-

tion on this reduced dictionary, and the coefficient could be

separated by some standard separation method. Of course,

such a subset of dictionary atoms is not known in practice and

we seek the next best option, which is the subset of dictionary

atoms that can best represent both mixtures. As mentioned

earlier, the independent decomposition of the mixtures give

representations that are not well suited for both mixtures. We

now illustrate how to use a monochannel dictionary to find

the good set of dictionary atoms to represent the mixtures.

Let Mλ be the linear combination of the two mixtures

such that,

Mλ = x1 + λx2, (4)

where λ is a predetermined constant. We can express Mλ as,

Mλ =
N∑

n=1

K∑

k=1

(a1,n + λa2,n)ckdk. (5)

The parameter λ affects the weighing of the sources in

Mλ. For example, if we compare eq. (1) and (4), we find

that by setting λ = −a1,n/a2,n, we can cancel the nth source

from Mλ. By looking at the sparse representation of different

linear combination of the mixtures, we can identify the most

frequently occurring dictionary atoms as those most likely to

represent the underlying source. However, for computational

reasons, we would like to limit the number of realizations of

λ to a minimum. Given one instance of λ, we can find the

subset of dictionary atoms to represent Mλ using some single

channel decomposition method such as BESS, MP, or BP. If

multiple instances of Mλ are available, we can take the most
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frequently occurring atoms for the sparse representations of

all the values of λ. Once the atoms are determined, a least

square approximation can be used to represent each mixture.

The final representation of the mixtures will share the same

dictionary atoms and if the sources were sparse enough, the

mixture coefficients will be clustered along the mixing matrix

columns, and can be separated. In section 4, we show results

for this approach and compare it with stereo dictionary de-

composition. A summary of the algorithm is given in table 1.

Table 1. Algorithm Overview
1. Choose λ.

2. Create linear combination of mixtures, Mλ = x1 + λx2.

3. Apply sparse decomposition algorithm on (2) such that Mλ =P
i∈A cidi, where A = {i : ci �= 0}.

4. Defined reduced dictionary, Dr = {di}i∈A.

5. Find representation of each mixture, xm over reduced dictionary by

least square approximation.

x1 =
P

i∈A c1,idi, and x2 =
P

i∈A c2,idi

6. Separate coefficients by projecting coefficient pairs of (c1,i, c2,i)

onto closest mixing matrix column.[3, 7]

3.3. Bounded Error Subset Selection for Source Separa-
tion

In [6], BESS has been shown to have an enumerated solution

with polynomial complexity and better rate distortion than

most commonly known decomposition methods. However,

for multichannel dictionaries, as the number of channel in-

creases this search space becomes more prohibitive. In this

work, we have successfully applied the monochannel dictio-

nary method for BESS and the results are presented in sec-

tion 4. Computational savings over an augmented dictionary

should be evident for an enumerated approach such BESS.

4. EXPERIMENTS AND RESULTS

4.1. Dictionary Atom Selection of Monochannel Method

We devised the following experiment to find out how our

method picks the dictionary atoms out of a mixture. We cre-

ated 3 random artificial signals from a linear combination of

Cx dictionary atoms, and mixed them using some known mix-

ing matrix. We found the dictionary atoms used to represent

3 instances of Mλ with λ = −a1,n/a2,n, and n = 1, 2, 3 and

took the union of the dictionary atoms for these representa-

tions. We then computed the percentage of correct atoms re-

covered by our method, relative to the total known atoms used

by the sources. We also found the number of wrong atoms

picked by our methods and computed its percentage relative

to the total known source atoms. Results for one such exper-

iment is plotted in the top and bottom portion of fig.1 respec-

tively. It has to be noted that the sum of correct and wrong

atoms can be larger than the original number of atoms used
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Fig. 1. Plot of % of correct source atom (top fig) and % of in-

correct source atoms (bottom fig) that appear in mixture rep-

resentation. % is relative to total atoms that is known(apriori)

to represent sources.

to represent the sources. We compared these features against

the Matching Pursuit using stereo dictionary, and found that

the monochannel case consistently picks a larger percentage

of original dictionary atoms. Not shown here for space con-

sideration is that the sparser the original signal, the better

our method is at picking the sources’ atoms. This supports

our earlier claim that this method does a better job at pick-

ing atoms to represent the underlying sources. Furthermore,

we find that as the approximation error of the algorithm de-

creases below 0.1, we get an exponential increase in ”wrong”

dictionary atoms being picked. We find that source separa-

tion performance improves when we pick a higher percentage

of correct atoms and a lower percentage of ”wrong atoms”.

Below, we compare separation performance of our method

against the MP with stereo dictionaries, for speech mixtures.

4.2. Performance Evaluation

We evaluated the performance of our proposed approach on

the blind separation of 3 second tracks of 2 mixtures of 3 male

speakers sampled at 16 Khz. These were artifically mixed

with an instantaneous mixing matrix. The dictionary used

was a KSVD trained dictionary[9], with 4096 atoms of size

512 × 1. We evaluated three variations of our algorithm. The

first case, which we refer to as ”Type-1 MP with mono dic-

tionary,” is a straightforward implementation of the algorithm

in table 1, with λ = 1, and Matching Pursuit sparse decom-

position method used. The second case, which we refer to

as ”Type-2 MP with mono dictionary” is a modified version

of the algorithm in table 1. In this case, we pick 3 values of

λn = −a1,n/a2,n, with n = 1, 2, 3, and for each case we

repeat steps 2-4 from table 1. We take the union of the bases

found in step 4 for all 3 instances of λ, and define this as
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Fig. 2. SIR comparison between 3 mono dictionary methods

and a stereo method. We see that type-2 MP and BESS per-

form the best.

Fig. 3. SAR comparison between 3 mono dictionary methods

and a stereo dictionary method. We see that type-2 MP and

BESS perform the best.

our reduced dictionary. Steps 5-6 are done over this reduced

dictionary. The third case, is called ”BESS with mono dictio-

nary”, is a direct implementation of the algorithm in table 1

with λ = 1 and using BESS sparse decomposition method.

The three approaches were compared with MP over a stereo

dictionary. For fair comparison, we assume the mixing ma-

trix is known for all the methods, and use coefficient space

partitioning to separate the coefficients once we have the rep-

resentation in step 5[7]. The performance of the separated

signals were evaluated using the BSS-EVAL toolbox [10] and

its two main metrics, Signal to Interference Ratio (SIR) and

Signal to Artifact Ratio (SAR) are plotted in fig. 2 and fig. 3.

4.3. Discussion

As can be seen in fig. 2, we get good results for all three

monochannel methods for SIR and SAR. Of particular inter-

est is the concurrent improvement in SAR for the BESS algo-

rithm, and the type-2 monochannel MP. Artifacts remain an

area where much improvements is still needed for sparse de-

composition methods, and it common to have improvement

in SIR at the expense of SAR. We find that our approach has

indeed opened new avenues for improving performance for

both metrics. We find that using this method with only one

λ works well with enumerated approaches such as BESS, but

does not necessarily provide much improvement for an MP

algorithm. However, by using a few strategically picked val-

ues of λ, we get a notable improvement in performance even

with MP. Not shown in this paper for space consideration is

that the type-2 MP method is very robust to mixing matrix es-

timation errors. We are currently working on computationally

efficient ways to take advantage of more combinations of λ.

5. CONCLUSION

We have proposed a new approach to multichannel sparse

decomposition using monochannel dictionaries and success-

fully applied it to underdetermined BSS. The new approach

allowed us to overcome some computational hurdles that pre-

viously made algorithms such as BESS unattractive for sepa-

ration. We showed that BESS can offer significant improve-

ment in performance metrics such as interference rejection

and level of artifacts. Also, we demonstrated that there is a

lot of promise with this type of sparse decomposition method

if λ is well chosen. We are currently working on formalizing

this approach to find how to optimally pick this parameter.
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