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ABSTRACT
We introduce in this paper an auxiliary function approach
to parameter estimation of the constrained sinusoidal model,
which enables us to derive a complex-spectrum-domain EM-
like multiple F0 estimation algorithm. Through simulations,
we evaluated the performance of the presented method in the
ability to avoid locally optimal solutions. We implemented
a monaural speech separation system based on the presented
method and confirmed its performance on compound signals
of real speech.

Index Terms— Acoustic signal analysis, Speech en-
hancement, Optimization methods, Parameter estimation

1. INTRODUCTION

Many conventional methods for multiple F0 estimation are
based on the power spectrum domain approach, in which the
influence of the interferences between frequency components
of different sources are assumed negligible. However, it be-
comes usually difficult to infer F0s only from power spectrum
when two voices are mixed with close F0s. In such a situa-
tion not only the harmonic structure (powers of harmonics)
but also the phase of each component is an important cue for
precise estimation of F0.

Generally speaking, if the compound signal were sepa-
rated into single voices, then it would be a simple matter to
obtain an F0 estimate and phase estimates of the harmonics
from each stream. On the other hand, if the F0s and the phases
were known in advance, these information could be very use-
ful for any separation algorithms. This leads to a “chicken and
egg” situation: F0/phase estimation and source separation are
each a prerequisite of the other. This fact leads us naturally
to formulate F0/phase estimation and source separation as a
joint optimization problem. The method described in this pa-
per performs F0/phase estimation step and source separation
step iteratively using a constrained sinusoidal model.

The range of application of sinusoidal model has widened
to Text-To-Speech synthesis, speech modification, coding,
etc. since McAulay et al. [1] showed that the sinusoidal sig-
nal model could be applied to Analysis-by-Synthesis systems
to obtain high-quality synthesized speech. In particular, as
the possibility to generate high-quality synthesized speech
shows that the sinusoidal signal model represents extremely
well acoustic signals such as speech and music, we can have
high expectations for its application to source separation.

∗The author performed the work while at the University of Tokyo.

While McAulay et al. used as the model a mixture of K
pure tone signals, one can also consider the use of the super-
position of K harmonic signals (source signal composed of
N harmonic components, where the frequency of n-th har-
monic component is n times the F0). This model is often
used for single channel source separation especially when the
target mixed signal is assumed to be composed of harmonic
signals [3, 4, 5]. Most of the source separation approaches
using this model are based on gradient search or sampling
methods[3, 4, 5]. However, this kind of numerical compu-
tation is often beset with local optimum problems and com-
putational costs. A global optimum is not guaranteed to be
obtained unless, in the case of the gradient search methods
the iterative computation is led to convergence for an infin-
ity of initial points, or in the case of the sampling methods
an infinite number of trial is performed. For that reason, the
problem is to know if the search for the solution can be per-
formed with a low computational cost or if it has an ability to
avoid local optima.

As explained above, albeit the sinusoidal signal model
represents extremely well acoustic signals such as speech and
music, room was left for discussion on how to estimate its pa-
rameters. Against this background, we describe in this paper
a new optimization algorithm to obtain the maximum likeli-
hood parameter of the constrained sinusoidal model.

2. PROBLEM SETTING
Consider as the time-varying acoustic signal the sum of pseu-
doperiodic signals given in an analytic signal representation:

s(t) =
K∑
k=1

N∑
n=1

Ak,n(t)ejnθk(t), t ∈ (−∞,∞), (1)

where the instantaneous phase θk(t) of the fundamental com-
ponent, and the instantaneous complex amplitude Ak,n(t)
of the n-th partial component are the unknown parame-

ters. μk(t) = θ̇k(t) amounts to the instantaneous F0 and
ak,n(t) = |Ak,n(t)| the instantaneous amplitude, which are
both assumed here to change gradually over time. These are
the free parameters that one wants to estimate, which we
denote for convenience by Θ(t). Now letting y(t) be the
observed signal of interest, we assume the following model:

y(t) = s(t) + n(t), t ∈ (−∞,∞), (2)

where n(t) is a Gaussian white noise. The maximum likeli-
hood estimate of Θ(t) can thus be obtained by minimizing
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the L2 norm of the error signal in t ∈ R(−∞,∞):∫
R

∥∥∥y(t)− s(t)
∥∥∥2

dt. (3)

We now show that this time domain objective can be
equivalently formalized in the time-frequency domain de-
fined by the Gabor transform (STFT).

Lemma 1. The time-frequency components of y(t) and s(t)
by Gabor transform is by definition given by

Gy(ω, t) �
〈
y(u), ψω,t(u)

〉
u∈R

, (4)

Gs(ω, t) �
〈
s(u), ψω,t(u)

〉
u∈R

, (5)

where ψω,t(u) is the Gabor function, which is a nonorthog-
onal basis used to measure the component of frequency ω at
time t, and defined as the product of the complex sinusoid with
frequency of ω and the Gaussian window centered at time t:

ψω,t(u) = e−
ω2
0
2 (u−t)2+jω(u−t), (6)

where ω0 is a time spread parameter of the Gaussian window,
that can be chosen arbitrarily. Though trivial, we then have∫

R

∥∥∥y(t)− s(t)
∥∥∥2

dt = η

∫∫
R2

∥∥∥Gy(ω, t)−Gs(ω, t)
∥∥∥2

dωdt,

where η is a constant.

If we now assume that θk(u) and Ak,n(u) are respectively
piecewise linear and piecewise constant, then

Gs(ω, t) =
K∑
k=1

N∑
n=1

Ak,n(t)e
− (ω−nμk(t))2

2ω2
0 . (7)

In the case of discrete-time observations, the problem is to
minimize

Φ(Θ) =
∫

R

∥∥∥∥Y (ω)−
∑
k,n

Ak,ne
− (ω−nμk)2

2ω2
0

∥∥∥∥2

dω, (8)

at each discrete time point with respect to Ak,n and μk. For
clarity of notations the time index of Ak,n(t), μk(t) and Θ(t)
is omitted and Y (ω) is a simplified notation of Gy(ω, t).

3. PARAMETER OPTIMIZATION ALGORITHM
The parameter optimization algorithm we propose in this
paper is based on a principle called the auxiliary function
method. We first define the auxiliary function and then show
how the iterative algorithm is performed.

Definition 1. (Auxiliary function) Let Φ(Θ) be the objective
function that one wants to minimize with respect to the pa-
rameter Θ = (Θ1, · · · ,ΘI). We then define Φ+(Θ,m) as
the auxiliary function of Φ(Θ), and m = (m1, · · · ,mJ) as
the auxiliary parameter if Φ+(Θ,m) satisfies

Φ
(
Θ

)
= min

m
Φ+

(
Θ,m

) ⇒ Φ
(
Θ

)
� Φ+

(
Θ,m

)
. (9)

Lemma 2. Denoting by Φ(Θ) the objective function, and by
Φ+(Θ,m) the auxiliary function of Φ(Θ), then the objective
function Φ(Θ) can be decreased monotonically by minimiz-
ing Φ+(Θ,m) iteratively with respect to m = (m1, · · · ,mJ)
and with respect to Θ:

m̂ = argmin
m

Φ+
(
Θ,m

)
(10)

Θ̂ = argmin
Θ

Φ+
(
Θ, m̂

)
(11)

If Φ(Θ) is bounded below, then the parameter Θ converges
to a stationary point.

Proof. Suppose we set Θ to an arbitrary value Θ̃. We
will prove that Φ(Θ) is non-increasing after the update
Eq. (10) and Eq. (11). From Eq. (10), one obtains

Φ(Θ̃) = Φ+(Θ̃, m̂), and it is obvious from Eq. (11) that

Φ+(Θ̃, m̂) � Φ+(Θ̂, m̂). By definition, one sees from Eq.

(9) that Φ+(Θ̂, m̂) � Φ(Θ̂). Therefore, we can immediately

prove that Φ(Θ̃) = Φ+(Θ̃, m̂) � Φ+(Θ̂, m̂) � Φ(Θ̂).

It should be emphasized here that the EM algorithm can
be considered as a special case of this method.

One possible auxiliary function of Φ(Θ) can be derived
using the lemma suggested for example in [2].

Lemma 3. If a complex function mi(x) satisfies
∑

i mi(x) =∑
i m

∗
i (x) = 1, then for x ∈ R(−∞,∞)

∫
R

∥∥∥∥y(x)−
∑
i

si(x)
∥∥∥∥2

dx

�
∑
i

1
βi

∫
R

∥∥∥∥mi(x)y(x)− si(x)
∥∥∥∥2

dx, (12)

where βi is a constant such that
∑

i βi = 1, βi ∈ (0, 1).

Putting Sk,n(ω) � Ak,ne
−(ω−nμk)2/2ω2

0 for simplicity of
notation, then by the Lemma 3 and from Eq. (8) we have the
following inequality:

Φ(Θ) =
∫

R

∥∥∥∥Y (ω)−
∑
k,n

Sk,n(ω)

∥∥∥∥∥
2

dω

�
∑
k,n

1
βk,n

∫
R

∥∥∥mk,n(ω)Y (ω)− Sk,n(ω)
∥∥∥2

dω, (13)

where βk,n ∈ (0, 1),
∑

k,n βk,n = 1 and equality holds if

mk,n(ω) =
1

Y (ω)

[
Sk,n(ω)+βk,n

(
Y (ω)−

∑
k,n

Sk,n(ω)
)]

.

(14)
Let us denote by Φ+(Θ,m) the right-hand side of Eq. (13).
By Definition 1, Φ+(Θ,m) is an auxiliary function of the
objective Φ(Θ), and mk,n(ω) is an auxiliary parameter. By

Lemma 2, we consider next to minimize Φ+(Θ,m) with
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respect to Θ. Using the result of the Gaussian integral:∫
R
‖Sk,n(ω)‖2dω =

√
πω0‖Ak,n‖2, one obtains

Φ+(Θ,m) =
√
πω0

∑
k,n

∥∥Ak,n

∥∥2

βk,n

+
∑
k,n

1
βk,n

∫
R

(∥∥mk,n(ω)Y (ω)
∥∥2

− 2e
− (ω−nμk)2

2ω2
0 Re

[
Ak,nm

∗
k,n(ω)Y ∗(ω)

])
dω. (15)

However, one notices from Eq. (15) that one still cannot
obtain analytically the update equation for μk because of the

nonlinear part e−(ω−nμk)2/2ω2
0 in Eq. (15). One may want to

derive another auxiliary function such that the update equa-
tion for μk can be obtained analytically. In order to derive
such an auxiliary function, we focused on two points: one is
that −e−x is a continuously differentiable concave function,
and second is that we have the following theorem about con-
tinuously differentiable concave function.

Lemma 4. Let f(x) be a real function of x that is continu-
ously differentiable and concave. Then, for any point α ∈ R,

f(x) � f(α) + (x− α)f ′(α). (16)

Since −e−x is a differentiable concave function, using
Lemma 4 we have the inequality −e−x � (x − α − 1)e−α,

for any point α ∈ R. Replacing x with (ω − nμk)
2
/2ω2

0 and
α with a real function αk,n(ω), then from Eq. (15),

Φ+(Θ,m) ≤ √πω0

∑
k,n

∥∥Ak,n

∥∥2

βk,n
+

∑
k,n

1
βk,n

∫
R

[∥∥mk,n(ω)Y (ω)
∥∥2+2Re

[
Ak,nm

∗
k,n(ω)Y ∗(ω)

]

e−αk,n(ω)

(
(ω − nμk)

2

2ω2
0

− αk,n(ω)− 1
)]

dω. (17)

Denoting by Φ̃+(Θ,m, α) the right-hand side of this inequa-

tion, Φ̃+(Θ,m, α) can also be considered as an auxiliary
function of Φ(Θ) because

Φ(Θ) � Φ+(Θ,m) � Φ̃+(Θ,m, α). (18)

In this case both mk,n(ω) and αk,n(ω) are the corresponding

auxiliary parameters. The equality Φ(Θ) = Φ̃+(Θ,m, α)
holds when mk,n(ω) is given by Eq. (14) and αk,n(ω) by

αk,n(ω) =
(ω − nμk)

2

2ω2
0

. (19)

The advantage worth mentioning of deriving this auxiliary
function is that it enables the analytical expression of the up-
date equation for the F0 parameter μk, allowing us a complex-
spectrum-domain EM-like multiple F0 estimation algorithm.

Fig. 1. An illustration of the iterative algorithm

Setting to 0 the partial derivative of Φ̃+(Θ,m, α) with respect
to μk, one obtains the F0 parameter update rule:

μk =

∑
n

n

βk,n

∫
R

e−αk,n(ω)Re
[
Ak,nm

∗
k,n(ω)Y ∗(ω)

]
ωdω

∑
n

n2

βk,n

∫
R

e−αk,n(ω)Re
[
Ak,nm

∗
k,n(ω)Y ∗(ω)

]
dω

.

(20)

Setting to 0 the partial derivative of Φ̃+(Θ,m, α) with respect
to A∗k,n, the update equation for Ak,n can also be derived as

Ak,n =
1√
πω0

∫
R

mk,n(ω)Y (ω)e−αk,n(ω)

(
(ω − nμk)

2

2ω2
0

− αk,n(ω)− 1
)

dω. (21)

The presented algorithm is summarized as follows (Fig. 1).

Step 0 Initial setting of {μk, {Ak,n}1≤n≤N}1≤k≤K .

Step 1 Update mk,n(ω) by Eq. (14).

Step 2 Update e−αk,n(ω) by Eq. (19).
Step 3 Update Ak,n by Eq. (21).
Step 4 Update μk by Eq. (20) and return to Step 1.

The algorithm described above generates the suboptimal esti-
mates not only of μk and Ak,n but also of the separate signal
mk,n(ω)Y (ω). This fact shows that the algorithm performs
parameter estimation and source separation simultaneously.

4. EXPERIMENTAL EVALUATION

We first compared the dependency on the initial parameter
and the convergence speed of the gradient search method
and the proposed method. In this comparative experiment,
we used a synthetic signal as test data which was created by
adding together two periodic signals (with F0s of 200Hz and
270Hz) composed of 10 harmonic components, with each
component’s amplitude and phase determined by random
generation. In the sinusoidal signal model, we set K = 2
and N = 10. A Gabor transform with diffusion parameter
ω0 = 0.366 was performed on this synthetic signal (16kHz
sampling frequency) to obtain Y (ω). The courses of the
update of the F0 parameters μ1, μ2 at each step through the
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Fig. 2. Course of the update of μ1, μ2 (the proposed method)
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Fig. 3. Course of the update of μ1, μ2 (the gradient method)

proposed method and the gradient method, starting from var-
ious initial parameter conditions, are shown in Fig. 2 and
Fig. 3. The transitions of the update values of μ1 and μ2
corresponding to the same iterative computation are shown in
each figure respectively in the upper and lower part with the
same color and same line type. The initial value for the am-
plitude Ak,n was set to 0. One sees from Fig. 2 and Fig. 3 that
the gradient method often gets trapped into stationary points
different from the true values for initial values of μ1, μ2
which are not sufficiently close to the true values (200Hz,
270Hz), while the proposed method converges quickly from
any initial points in a large interval to the true values.

Next, we confirm here the performance for single channel
source separation. We use the ATR B-set speech database to
build the mixed signals by adding together the waveforms of
utterances from two male speakers, two female speakers, or
a male speaker and a female speaker. For all the speech data
the sampling rate was 16kHz, and the frequency analysis was
done using a Gabor transform with a frame interval of 10ms.
ω0 was set to 0.366 and N was set to 30. The initial val-
ues for μk were obtained by finding all the frequencies giving
a minimum or a maximum of the real part or the imaginary
part of Y (ω), and selecting the frequencies with the 10 largest
powers. K was initially set to 10 and after the parameter con-
verged, the source models with the 2 largest total-powers were
chosen as the final source signal estimates. In this experiment,
in order to confirm the basic source separation performance in
the situation where the permutation problem would be dealt
with, we determine to which source the separated signals cor-
respond by looking at their proximity to each signal prior to
the mixing. Under the above conditions, an example of re-

(c)

(b)

(a)

(c)

(b)

(a)

Fig. 4. Utterance by a female speaker (a), a male speaker (b)
and their mixed signal (c).

Fig. 5. Separated signals corresponding to the female (top)
and the male speaker (bottom).

sults of the separation of the mixed signal shown in Fig. 4
is shown in Fig. 5. After separation performed on the mixed
signal of the male speaker A and the female speaker B (with
a SNR of -0.3dB seen from the male speaker A), the SNRs
for the speakers were 7.2dB and 6.4dB. On the mixed sig-
nal of the female speaker A and the female speaker B (with a
SNR of 1.5dB seen from the female speaker A), we obtained
the SNRs of 6.0dB and 4.8dB, and on the mixed signal of
the male speaker A and the male speaker B (with a SNR of
-0.3dB seen from the male speaker A), we obtained the SNRs
of 4.8dB and 4.3dB after the separation was performed.

Although the method presented in this paper estimates the
parameter independently for each frame, one may expect a
substantial reduction of the musical noise and an improve-
ment of the SNR if a coordinated parameter estimation across
several adjacent frames could be performed. This shall be one
of our future works.

5. SUMMARY
In this paper, we introduced the auxiliary function method
for parameter optimization of constrained sinusoidal model,
which enabled us to derive a complex-spectrum-domain EM-
like multiple F0 estimation algorithm. We confirmed the abil-
ity to avoid local solutions and the convergence speed of the
presented method and the performance on speech separation.
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