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ABSTRACT

This paper treats gunshot detection in audio streams from movies
as a maximization task, where the solution is obtained by means of
dynamic programming. The proposed method seeks the sequence of
segments and respective class labels, i.e., gunshots vs. all other audio
types, that maximize the product of posterior class label probabili-
ties, given the segments’ data. The required posterior probabilities
are estimated by combining soft classification decisions from a set
of Bayesian Network combiners. Tests that have been performed on
a large set of audio streams indicate that the proposed method yields
high performance in terms of both precision and recall of detected
gunshot events.

Index Terms— Gunshot Detection, BNs, Dynamic Program-
ming

1. INTRODUCTION

The increasing availability of multimedia content over the last decade
via numerous distribution channels has highlighted the need for ef-
ficient mechanisms to protect sensitive groups of the population im-
perative. To this end, efficient audio characterization techniques can
assist the process of detecting violent scenes in audio-visual content,
such as movies. Due to the fact that violence in movies is frequently
correlated with gunshots events, we propose in this paper a method
that detects gunshots in audio movie content.

Previous work in the more general field of violence detection has
mainly focused on processing visual data, e.g., [1] and [2]. Audio
content characterization has so far received less attention. To this
end, in [3], the changes in the entropy of the energy envelop of the
audio signal are exploited as a means to assist processing of visual
data. In [4], eight audio features were investigated for discriminating
between violent and non-violent sounds in the case of pre-segmented
data, i.e., a manual segmentation stage was assumed prior to classi-
fication. The method in [5] presented a gunshot/scream detector for
audio data recorded in public places, by taking a separate detection
decision for each short-term frame. In [6], the authors of this pa-
per presented a robust method for classifying pre-segmented audio
data frommovies, into six classes, i.e., speech, music, environmental
sounds, gunshots, screams and fights. The last three of these classes
were considered to represent cases of violent content, and as a re-
sult the method in [6] was also employed as a binary classification
scheme for violent vs. non-violent audio content.

In order to circumvent the need for a manual segmentation stage,
this paper formulates gunshot detection as a maximization task. In

other words, the method seeks the sequence of segments and the re-
spective class labels, i.e., gunshots vs. all other audio types, that
maximizes the product of posterior (class label) probabilities, given
the segments data. Since an exhaustive approach to this solution is
unrealistic, we resort to dynamic programming to solve this max-
imization task. The potential of this type of formulation has been
exploited by the authors in [7] in the context of speech/music dis-
crimination of radio recordings.

In order to estimate the required posterior probabilities for this
two class problem, i.e., gunshots vs all, we resort to the following
scheme:

• Audio data are considered to belong to one of the following
eight classes: Music, Speech, Gunshots, Fights, Screams and
three classes of environmental sounds

• For each one of the above eight classes, a separate Bayesian
Network (BN) combiner has been trained to yield binary clas-
sification decisions for the class vs all other classes problem.
By its nature, each one BN returns the respective posterior
class probability.

• The posterior probabilities returned by the eight BNs are then
processed to yield an estimate of the posterior probabilities of
the two class problem of gunshots vs all.

Previous work by the authors in [6] has set evidence that the
combination of decisions taken from an ensemble of one-vs-all BNs
outperforms a single gunshots-vs-all BN for the binary problem of
gunshots vs all classification. Thus, this paper builds upon the expe-
rience obtained in [6] and [7] in order to formulate the gunshot detec-
tion problem as a maximization task and embed a reliable posterior
probability estimator into the respective dynamic programming so-
lution. Furthermore, in order to improve the accuracy of segment
boundaries, a post-processing stage based on Bayesian Networks is
employed in the end.

The paper is structured as follows: Section 2 describes the fea-
ture extraction stage; Section 3 formulates gunshot detection as a
maximization task and provides a dynamic programming solution;
The posterior probability estimator and related issues are given in
Section 4; The datasets that we have used along with the method’s
performance are presented in Section 6. Finally conclusions are
drawn in Section 7.

2. FEATURE EXTRACTION

At a first step, the audio stream is broken into a sequence of non-
overlapping short-term frames (50 msecs long) and twelve features
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are extracted per frame. The proposed feature set has been the re-
sult of extensive experimentation. A short description of the adopted
features is given in Table 1. Briefly, we have used two time-domain
quantities, namely the Energy Entropy and the Zero Crossing Rate.
Furthermore, we have used two quantities based on the morphol-
ogy of the signal spectrogram, the first three Mel Frequency Cep-
stral Coefficients, Spectral RollOff and the ratio of the Zero Pitch
frames (pitch was estimated by means of autocorrelation). Finally,
two quantities based on the chroma vector have also been used. For
each measure quantity a different statistic, computed from respective
segments, is used as a feature, as shown in Table 1. For a detailed
description the reader is referred to [6]. For notational purposes, let
F = {O1, O2, . . . , OT } be the resulting feature sequence, where T
is the number of short-term frames and Ot, t = 1 . . . T stands for
the t-th 12-dimensional feature vector.

Feature Statistic
o1 Spectrogram-based feature std
o2 1st Chroma-based feature mean
o3 2nd Chroma-based feature median
o4 Energy Entropy max
o5 MFCC 2 std
o6 MFCC 1 max
o7 ZCR mean
o8 Sp. RollOff median
o9 Pitch zero ratio
o10 MFCC 1 max/mean
o11 Spectrogram max
o12 MFCC 3 median

Table 1. Features and related statistics

3. GUNSHOT DETECTION AS A MAXIMIZATION TASK

In this stage, gunshot detection is treated as a maximization task,
where the solution is obtained by means of dynamic programming.
The basic idea is to define a function that returns a score given a
sequence of segments and respective class labels. We choose as
the segmentation sequence the one corresponding to the maximum
score. To this end, for an arbitrary sequence ofK segments, let

{d1, d2, . . . , dK−1, dK ≡ T}
be the frame indexes that mark the end of each segment. Therefore,
the k-th segment starts at frame index dk−1 + 1 and ends at frame
index dk (the first segment starts at the first frame and ends at frame
index d1). In addition, let ck be the class label of the k-th segment
(gunshots or “other”) and p(ck | {Odk−1+1, . . . , Odk}), be the pos-
terior probability of class label ck given the sequence of observations
(feature sequence) of the k-th segment. We then form the following
product function

J(K, {d1, d2, . . . , dK−1, dK}, {c1, . . . , cK}) ≡
p(c1 | {O1, . . . , Od1})

∏K
k=2 p(ck | {Odk−1+1, . . . , Odk}) (1)

where independence between successive segments has been assumed.
J(.) is the product of posterior probabilities of the class labels given
the within the segments data and needs to bemaximized over all pos-
sible values ofK, {d1, d2, . . . , dK} and {c1, c2, . . . , cK}. Since an
exhaustive approach would amount to an excessive computational
load, we resort to a dynamic programming solution. For a detailed

description of the solution the reader is referred to [7], where we for-
mulated speech/music discrimination of radio recordings as a maxi-
mization task as well. In this paper, we only provide the basic steps
of the solution.

In order to proceed it is important to make the assumption that
Tmin ≤ dk − dk−1 ≤ Tmax, k = 1 . . . K, i.e., the duration of
segments is bounded by Tmin and Tmax. This assumption is not re-
strictive because long segments will simply be broken into a chain of
shorter ones, which can be concatenated at a simple post-processing
stage. The reason that this assumption is adopted is that J(.) is a
product of probabilities and as such, favors segmentation sequences
consisting of a small number of segments, even though the respective
posterior probabilities can be quite low.

As it is common with dynamic programming techniques [8], a
grid is first constructed by placing the feature sequence on the x-axis
and the two states, i.e., gunshots/“other” on the y-axis. This is shown
in Figure 1, where G stands for gunshots and O stands for all the
other types of audio data. Each node has a physical meaning, e.g.,

O

G

......

......

d1 d2 d3

......

......

Fig. 1. Dynamic programming grid.

node (Odk , G), Tmin ≤ dk ≤ T stands for the case that a segment
which is part of a gunshot ends at frame index dk. As a result, a
path of K nodes corresponds to a possible sequence of segments
and respective class labels. We have proved in [7] that the cost of
a path of K nodes, say {(Od1 , c1), (Od2 , c2), . . . , (OdK , cK)}, is
equal to the value of J(.) for the respective segmentation sequence,
provided that the transition cost, T (.), between successive nodes is
defined properly, i.e.,

T ((Odk−1 , ck−1) → (Odk , ck)) = p(ck | {Odk−1+1, . . . , Odk})
(2)

Therefore, the best path on the grid maximizes J(.) and corresponds
to the desired segmentation solution. Details on computing the best-
path sequence can be found in [7].

For the above formulation to have practical meaning, it is im-
portant that posterior probabilities are reliably estimated. As it will
be presented in the next section, we have chosen to approximate
p(ck | {Odk−1+1, . . . , Odk}) by means of processing the decisions
of an ensemble of Bayesian Network combiners.

4. POSTERIOR PROBABILITY ESTIMATION

As it was presented in Section 3, the proposed method requires the
estimation of posterior probabilities for a two-class problem, i.e.,
gunshots vs all. Although we could have used one single BN for this
task, our previous experience with pre-segmented data [6] suggests
that a more complex estimator is needed. To this end, we have de-
fined the following eight classes in order to describe audio content
in movies: Gunshots, Fights, Screams, Music, Speech, “Others1”,
“Others2”, “Others3”. “Others1” consists of environmental sounds
that have a relatively stable energy contour, e.g., wind, rain and low
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energy noise. “Others2” refers to environmental sounds with abrupt
changes in energy, e.g., moving objects, closing doors, etc. Finally,
“Others3” covers sounds form various types of machinery, e.g., cars,
airplanes, etc. The set of classes defined in this work is a refinement
of the scheme proposed in [6]. The main deference is that the class
“Others” in [6], has been decomposed into three classes, in order to
achieve a more detailed description of movie content.

For each one of the eight classes, ωl, l = 1, . . . 8, a binary clas-
sifier, i.e, a “One Versus All classifier ” (OVAC) is employed. In
this paper, each OVAC is a Bayesian Network combiner. There-
fore, each OVAC estimates the posterior probability of the respec-
tive class, p(ωl | {Odk−1+1, F, Odk}), given the segment’s data for
each one of the eight binary problems. However, since the dynamic
programming grid only requires the posterior probabilities of gun-
shots and “other” given the segment’s data, the eight aforementioned
probabilities are post-processed as follows:

• Let pmax be the maximum of the eight probabilities.
• If pmax was generated by the OVAC corresponding to gun-
shots, then in the grid p(c1 | {Odk−1+1, . . . , Odk}) = pmax

and p(c2 | {Odk−1+1, . . . , Odk}) = 1 − pmax

• In any other case, p(c1 | {Odk−1+1, . . . , Odk}) = 1− pmax

and p(c2 | {Odk−1+1, . . . , Odk}) = pmax.

This type of post-processing leads to trusting the decision of the gun-
shots vs all OVAC only when it outperforms all other decisions, thus
reducing the risk of error.

4.1. OVACs’ architecture

Each OVAC is a Bayesian Network (BN) combiner and corresponds
to a binary subproblem. All BNs follow the same architecture, shown
in Figure 2. For the i-th subproblem, each input node, Ri,j , j =
1, . . . , 3, corresponds to the binary decision of a simple k-NN clas-
sifier that operates on a 4-dimensional subspace. Ri,j = 1, if the
input sample is classified to ωi, and 0 otherwise. Yi is the out-
put node and corresponds to the true class label of the i-th binary
subproblem. By inferring in the BN, we estimate the probability
p(ωi | {Odk−1+1, . . . , Odk}) with P (Yi = 1|Ri,1, Ri,2, Ri,3).

Ri, 1 Ri,2 Ri,3

Yi

Fig. 2. BNC architecture for the i-th subproblem

We now describe how feature sequences of varying length are
mapped to three 4-dimensional spaces on which the k-NN classifiers
operate:
1. A statistic is computed for each one of the twelve feature se-
quences. The choice of statistics, e.g., average value, standard
deviation, etc., was the result of extensive experimentation
and further details can be found in [6]. This procedure leads
to a 12-dimensional vector v = [v1 . . . v12] for any audio seg-
ment.

2. Vector v is then broken into three 4-dimensional sub-vectors,
each one of which is fed as input to a k-NN classifier.

In order to train the eight BNs more than 5000 audio segments
have been used, which have been manually segmented and labelled

from more than 30 movies. The length of segments varies in the
range [0.5 − 10] secs, with an average duration of 1.5 seconds. The
fact that statistics are used also justifies the need for a minimum
segment duration, i.e, Tmin, as was stated in Section 3. In our study
Tmin and Tmax were set equal to 0.5 and 1.5 secs respectively.

5. POST-PROCESSING FOR BOUNDARY CORRECTION

In order to further improve the system’s accuracy, a post-processing
scheme for boundary correction is applied on the segmented data.
The idea behind this procedure is to maximize a probabilistic cri-
terion related to the correctness of the boundary’s position. This is
performed with the following steps:

• Let Tb be the boundary (in secs) between two segments (gun-
shots and non-gunshots or vise versa). Furthermore, let cleft

and cright be the labels (1 for gunshots and 0 otherwise) of
the segments on the left and the right of the boundary.

• Set t = Tb − D, whereD is the search range, and i = 0.
• While t ≤ Tb + D do the following:

– Let xleft be the signal in the range [t − D, t].
– Let xright be the signal in the range [t, t + D].
– Using the gunshots vs all OVAC (say the g-th OVAC),
estimate the probabilitiesPleft = P (Yg = cleft|xleft)
and Pright = P (Yg = cright|xright). These are ac-
tually the probabilities that the left and right signals
(xleft and xright) around the current boundary posi-
tion (t) satisfy the initial labels, i.e., cright and cleft.

– Set Pi = Pleft · Pright.
– Set i = i + 1 and t = t + 0.050.

• CalculatemaxPos = arg max(P ).
• Set the new boundary position as follows: R = T+(maxPos·

0.050 − D)

This boundary correction algorithm improves system’s performance
if: a) the true boundary is indeed within the search range and b) the
initial labels (cleft and cright) are correct.

Initial Boundary  (T b)Tb-D Tb+D

Correct
Boundary

(C)

Repaired
Boundary

R

P

Fig. 3. Boundary Correction Algorithm: Tb is the center of the
search region. R is found by maximizing P .

6. EXPERIMENTS - RESULTS

6.1. Datasets

Apart from the audio segments that were used for training the OVACs
(see Section 4), a number of uninterrupted audio streams have been
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recorded from more than 10 movies, in order to test the overall
gunshot detection accuracy. For evaluation purposes, these audio
streams were also manually segmented and labeled as either “Gun-
shot” or “Non-Gunshot”. In total, almost two hours of audio data
have been used.

6.2. Results

Two couples of measures that describe the system’s performance
have been calculated. The first refers to the total proportion of cor-
rectly classified data:

• Precision: The proportion of audio data that was classified as
gunshots and was indeed gunshots.

• Recall: The proportion of gunshots data, that was correctly
classified as gunshots.

The second couple of performance measures refers to the event
detection ability of the algorithm:

• Detection Precision: The number of detected gunshots, that
were indeed gunshots, divided by the total number of detected
gunshots.

• Detection Recall: The number of correctly detected gunshots
divided by the total number of true gunshots.

It has to be noted here, that by “correctly detected gunshots”,
we mean the detected gunshots that overlap with a true gunshot.
The values of the two kinds of measures may differ a lot. In Fig-
ure 4, an example of gunshot detection is given (for an audio stream
with two gunshots). In that case, the precision of classified data
is Pr = T/2+T

T/2+1.2T
= 1.5T

1.7T
= 88.2% and the recall is equal to

Re = T/2+T
T+T

= 1.5T
2T

= 75%. The recall and precision measures
of the detection performance of the method are both equal to 100%,
since both of the existing gunshots were correctly detected, and no
other gunshots were detected.

time

T T

T/2 1.2T

True gunshot segments

Detected gunshot segments

Fig. 4. Gunshot detection example

In Table 2 the values of the four performance measures are pre-
sented before and after the post-processing stage. As far as the de-
tection performance of the algorithm is concerned, which is the most
important in practice, the precision and recall have the same values
before and after the post-processing stage, since only boundary cor-
rection is implied in this stage. As presented in the table, for the main
stage of the proposed algorithm, the precision is 64% and the recall
is 77.1%. Furthermore, according to the results, the post-processing
technique improves the performance (0.5% for the precision rate and
0.7% for the recall rate).

As far as the event detection ability of the method is concerned,
the precision rate is 78.8% and the recall is 90.6%. In other words,
9 out of 10 gunshots are detected, while for every 10 events that
are detected almost 8 are indeed gunshots. The difference between
the detection performance and the segmentation performance of the
proposed algorithm is something expected. This actually implies that

a large proportion of events are correctly detected, but an additional
error is involved to the segmentation performance that pertains to the
precise boundary specification.

Stage 1 Stage2
Precision 64.0% 64.5%
Recall 77.1% 77.8%

Det. Precision 78.8%
Rec. Precision 90.6%

Table 2. System performance at different stages

7. CONCLUSIONS

An algorithm for gunshot detection in audio streams from movies
has been presented. The problem has been treated as a maximization
task, where the solution is obtained by means of dynamic program-
ming, while the required posterior probabilities were estimated by
combining classification decisions from a set of Baysian Network
combiners. In terms of absolute duration, almost 65% of the de-
tected data were indeed gunshots, while almost 80% of the gunshots
data has been correctly detected. Furthermore, on an event-basis, the
false alarm rate is almost 20%, while only 10% of the gunshots are
not detected (false negative rate).
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