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ABSTRACT

Speech perceptual features, such as Mel-frequency Cepstral
Coefficients (MFCC), have been widely used in acoustic
event detection. However, the different spectral structures be-
tween speech and acoustic events degrade the performance of
the speech feature sets. We propose quantifying the discrimi-
native capability of each feature component according to the
approximated Bayesian accuracy and deriving a discrimina-
tive feature set for acoustic event detection. Compared to
MFCC, feature sets derived using the proposed approaches
achieve about 30% relative accuracy improvement in acoustic
event detection.

Index Terms— Acoustic event detection, Feature Selec-
tion, Bayesian Accuracy, Hidden Markov Models

1. INTRODUCTION

Acoustic Event Detection (AED), a subtask of audio scene
analysis [1, 2, 3, 4, 5, 6], has wide applications. In particu-
lar, information about non-speech sounds, i.e. (non-speech)
acoustic events, reveals human and social activities. Exam-
ples include a chair moving or door noise when the meeting
has just started [4], cheering of audience in a sports event
[7], a gunshot in the street [8] and hasty steps in a nursing
home. Such information is very helpful in applications such
as surveilence, multimedia information retrieval and intelli-
gent conference rooms. Some of the events are comparatively
consistent and salient, such as cheering, while others are sub-
tle, such as steps in a carpeted meeting room, laptop keyboard
typing and paper wrapping.
Previously reported works have focused on the problems

of segmenting audio into a small number of categories [2, 3],
segregating a few audio sources [1, 9], and detecting a few
highlight acoustic event [5]. Computers In the Human In-
teraction Loop (CHIL) & National Institute of Standards and
Technology (NIST) held AED evaluation in CLEAR 2006 [4]
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and 2007, attempting to identify both the temporal boundaries
and labels of twelve acoustic events in a real seminar environ-
ment. Many of the acoustic events are either subtle (low SNR,
e.g. steps, paper wrapping, keyboard typing), or/and overlap-
ping with speech, making the task particularly challenging.
Although various system architectures and feature sets have
been explored [4], even the top rated AED system has rather
low performance [10].
A suitable feature set plays an important role for AED.

Various audio perceptual features have been proposed for dif-
ferent analysis tasks [1, 11, 5]. In recent CLEAR Evalua-
tions for AED, the most popular features are complete sets
of speech perception features [4, 6], such as Mel-Frequency
Cepstral Coefficients (MFCC) and log frequency filter bank
parameters, which have been proven to represent speech spec-
tral structure well. However, these features are not necessarily
suitable for AED for the following reasons: 1) Limited work
has been done in studying the spectral structure of acoustic
events. The speech features designed according to the spec-
tral structure of speech might be far from optimal for AED 2)
The Signal-to-Noise Ratio (SNR) is low for AED especially
when the overlapping speech can be seen as noise. Therefore,
analysis of the spectral structure of acoustic events and design
of suitable feature sets are important for AED.
We propose quantifying the discriminative capability

of each feature component according to the approximated
Bayesian accuray and deriving a discriminative feature set
for acoustic event detection. All feature components in a
feature pool are first decorrelated by Principal Component
Analysis (PCA). Then we apply nonparametric distribution
estimation on all decorrelated feature components for each
acoustic event. With these estimated distributions, we can
approximate the Bayesian accuracies for the classification of
events, which quantify the discriminative capability of the
decorrelated feature components and guide our feature selec-
tion. We demonstrate that this proposed feature analysis and
selection framework can conveniently derive feature sets for
acoustic event detection (the new task) from a conventional
speech feature pool engineered for speech recognition (the
original task). HMM-based AED systems using the derived
feature sets outperform the baseline system usingMFCC with
identical number of parameters.
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2. SPEECH PERCEPTUAL FEATURES IN
ACOUSTIC EVENT DETECTION

Over the past decades, a lot of research has been done on
speech perceptual features [12, 13]. These features are de-
signed mainly based on the properties of speech production
and perception. The envelope of spectrogram (formant struc-
ture) instead of the fine structure of spectrogram (harmonic
structure) is believed to hold most information for speech.
Both log frequency filter bank parameters and MFCC [12]
use triangle bandpass filters to bypass the fine structure of
spectrogram. Moreover, to simulate the non-uniform fre-
quency resolution observed in human auditory perception,
these speech feature sets adopt non-uniform critical bands,
providing high resolution in the low frequency part.
Speech perceptual features have been widely used in au-

dio analysis [4, 6]. However, the spectral structure of acoustic
events is different from that of speech as shown in Figure 1.
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Fig. 1. Spectrograms of the acoustic events “Key Jingle”,
“Step” and human speech

Therefore, the speech feature sets designed according to
the spectral structure of speech could be far from optimal for
AED, questioning the validity of using exactly speech fea-
ture sets for AED. For example, they might neglect the fre-
quency parts that contain less speech discriminative infor-
mation which may contain much discriminative information
for acoustic events. On the other hand, they are designed to
particularly emphasize the acoustics that differentiate speech
phonemes.

3. MEASURE OF DISCRIMINATIVE CAPABILITY

We propose quantifying the discriminative capability of each
feature component according to the approximated Bayesian

accuray. Intuitively, the feature components with more dis-
criminative capability should have higher Bayesian accuracy.
This will help us to understand the salient feature components
of speech feature sets in the AED task and design suitable fea-
ture sets for AED.
For multi-class case, Bayesian accuracy is defined as:

P (correct) =
c∑

i=1

P (x ∈ Ri, ωi)

=
c∑

i=1

P (x ∈ Ri|ωi)P (ωi)

=
c∑

i=1

∫
Ri

P (x|ωi)P (ωi)dx (1)

where P (ωi) is the prior probability for ith class and
P (x|ωi) is the likelihood for an observation x of the i th class.
Notice Ri defines a particular region in feature space, where
the ith class gives the highest likelihood:

Ri =
{

x| argmax
k

P (x|wk) = i

}
(2)

Therefore we can approximate the Bayesian accuracy on
a data set X = x1, x2, . . . , xT as

P (correct) ≈ 1
T

T∑
t=1

δ

(
argmax

k
P (xt|wk)− l(t)

)
(3)

where l(t) denotes the true label for the tth instance, and
δ(∗) is the Dirac delta function.
To calculate the Bayesian error rate for a feature compo-

nent and without prior knowledge for each feature compo-
nent’s distribution, we adopt nonparametric density estima-
tion. Parzen window density estimation is a technique for
nonparametric density estimation [14]. Given a kernel func-
tion, the distribution of a given training set is approximated by
a linear combination of kernels centered at the observed data
points. In this study, we use parzen windows with Gaussian
kernel function to estimate the distribution on each feature
component for each event.
Figure 2 shows the varying Bayesian accuracy for all 52

feature components of a feature pool consisting of 26 log fre-
quency filter bank parameters and 26 MFCCs.

4. FEATURE SET DERIVATION

We propose to select feature components in a feature pool ac-
cording to their Bayesian accuracy on training dataset. To
reduce the correlation between different feature components,
we first apply Principal Component Analysis to the feature
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Fig. 2. Bayesian accuracy for different feature components

pool. Then two Bayesian accuracy based approaches are pro-
posed to quantify the discriminative capability for decorre-
lated feature components.
The first approach adopts the approximation of Bayesian

accuracy defined in Equation 3 as the objective function. The
second approach adopts the negative sum of the likelihood
Rank of the true label l(t) on each data point xt as the ob-
jective function F , as defined in Equation 4. We refer to
these two approaches asHard Bayesian and Soft Bayesian
respectively.

F = −
T∑

t=1

Rankt (l(t)) ; (4)

The derived feature set consists of those decorrelated fea-
ture components with high scores on the objective function.
We summarize the process of deriving a feature set for

AED in Figure 4.
.

Fig. 3. Feature Analysis & Selection Framework

5. EXPERIMENTS
5.1. HMM-based AED system

For the detection and classification of acoustic events, we
implement a hidden Markov model (HMM)-based system,
where each acoustic event is modelled by an HMMwith three

emitting states and left-to-right state transitions. The observa-
tion distributions of the states are incrementally-trainedGaus-
sian Mixtures Models with five mixtures. More detailed de-
scription of our CLEAR Evaluation HMM-based AED sys-
tem is available at [10].

5.2. Dataset & metric

Our acoustic event detection experiments use the official data
for CLEAR 2007 AED Evaluation [15]: about 3 hours for
system development and 2 hours for system evaluation. All
data are seminar style, having both speech and acoustic events
with possible overlap. Many of the events are subtle and
have low SNR compared to background noise or speech. The
performances are measured using AED-ACC [15], which is
defined as the F-score (the harmonic mean between preci-
sion and recall) on system output acoustic event (AE) labels
and reference AE labels. AED-ACC aims to score detection
and classification of all acoustic event instances, oriented for
applications such as real-time services for smart rooms and
audio-based surveillance.

5.3. Experiment setup

These experiments compare the performance of single-pass
HMM-based AED systems using either one of the derived
AED feature or the baseline set MFCC. The AED feature sets
are derived using the approaches in Section 4, from a pool of
conventional speech perceptual features, i.e. MFCC and log
frequency filter bank parameters. All feature sets have identi-
cal number (78) of components and all systems have identical
number of parameters.
The baseline set MFCC is widely-used in speech recogni-

tion and other audio applications. We use 26 MFCCs calcu-
lated on 0Hz - 11000Hz band along with their first order re-
gression (delta) coefficients and second order regression (ac-
celeration) coefficients (called MFCC26DAZ).
The first two derived feature sets (DERIVE26DAZ hard,

DERIVE26DAZ soft) each consists of 26 components de-
rived using Hard Bayesian or Soft Bayesian approaches
in Section 4 from a feature pool of 26 log frequency filter
bank parameters and 26 MFCCs. The delta and accelera-
tion coefficients of the above derived feature components
are also included. The second two derived feature sets (DE-
RIVE78 hard,DERIVE78 soft) each consist of 78 feature
components derived from a feature pool of 26 log frequency
filter bank parameters, their delta and acceleration coeffi-
cients and all 78 MFCC26DAZ components, using either
Hard Bayesian or Soft Bayesian approaches.

5.4. Experiment results

When training the system, we reserve one third of the three
hour development data as Dev set, used to tune some system
parameters. Figure 4 shows that the systems using any of the
derived feature sets outperform the baseline system both on
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Dev and test sets, with a relative AED-ACC improvement of
about 30%.
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Fig. 4. AED-ACC scores using the baseline feature set
MFCC26DAZ and the four derived sets

We also compare the performances when the feature sets
are used in our CLEAR Evaluation single-pass HMM-based
AED systems [10], trained on all data for system develop-
ment. Figure 5 shows all derived AED feature sets outper-
form the baseline. In particular, DERIVE78 soft achieves a
relative AED-ACC improvement of over 30%.
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Fig. 5. AED-ACC scores using the baseline feature set
MFCC26DAZ and the four derived sets

The above results indicate that for the AED task, the
widely-used complete set of MFCCs is far from optimal, and
feature sets derived in the proposed approaches could yield
better performance in AED without parameter increase.

6. CONCLUSION AND DISCUSSION

In this paper, we propose quantifying the discriminative capa-
bility of each (decorrelated) feature component according to
the approximated Bayesian accuray and deriving a discrim-
inative feature set for acoustic event detection. We demon-
strate the effectiveness of our method on CLEAR AED evalu-
ation task. The proposed feature analysis and selection frame-
work can conveniently derive feature sets for a new task (i.e.
acoustic event detection) from a conventional feature pool en-
gineered for a more conventional task (i.e. speech recogni-
tion).
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