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ABSTRACT

We propose a music segment detection method for audio sig-
nals. Unlike many existing methods, ours specifically focuses on
a background-music detection task, that is, detecting music used in
background of main sounds. This task is important because music is
almost always overlapped by speech or other environmental sounds
in visual materials such as TV programs. Our method consists of
feature extraction, dimension reduction, and statistical discrimina-
tion steps. For each step, we analyzed a set of methods to maxi-
mize the detection accuracy. With a simple post processing step, we
achieved a framewise error rate as low as 8 % even when the mixed
speech was louder than the target music by 10dB.

Index Terms— Background music detection, Gaussian mixture
model, k-nearest neighbor method, feature selection

1. INTRODUCTION

Automatically detecting music parts from audio signals in TV or
radio broadcasts is becoming a basic and important task to meet
the increasing demands for multi-media indexing systems and mu-
sic copyright management systems. In such audio signals, music is
often overlapped by narration, conversation, or other environmental
sounds. We call the task of detecting segments containing music on
audio signals “background music detection” in this paper.

For a similar purpose, many speech/music discrimination meth-
ods have been proposed in terms of feature extraction and discrim-
ination algorithms. They mainly discriminate pure speech or music
from each other.

Saunders proposed a speech/music discrimination system based
on the zero-crossing rate [1]. Then, Scheirer et al. proposed various
features and developed a system based on a Gaussian mixture model
(GMM) and the k-nearest neighbor method (k-NN). Some of the
features, namely, the spectral centroid, the spectral roll-off, and the
spectral flux, are related to the form of a sound spectrum and com-
monly used as basic features for other speech/music discrimination
systems [2][3] or for other tasks, such as musical genre classification
[4].

Some methods adopt features commonly used for audio process-
ing, such as Mel-frequency cepstral coefficients (MFCCs) with dis-
crimination algorithms based on a hidden Markov model (HMM) [5]
or a support vector machine (SVM) [6].

Several multi-media indexing systems include a function for de-
tecting music overlapped by other sounds. They are based on em-
pirical features such as edge intensity on a spectrogram [7] or the
level of harmonicity [8]. They assume musical sounds comprising
harmonic components with a stable frequency and are therefore not
always effective.

However, it is still unclear whether these features work effi-
ciently for background music detection because most features are

designed to discriminate speech from music.
In this paper, we investigate the properties of various features,

including the empirical features and the MFCCs used in previous
works, using statistical learning methods, GMM and k-NN, when
music is overlapped by speech with various amplitude ratios. Then,
we test two schemes for dimension reduction: feature selection by
Fisher’s criterion and a principal component analysis. These analy-
sis show that the use of the spectral powers along the Mel-frequency
scale, dimension reduction with PCA, and frame-by-frame discrim-
ination based on GMM yields the best accuracy.

2. METHODS

2.1. Feature extraction

To investigate features suitable for background music detection, we
consider four feature sets: (1) a set composed of 14 empirical fea-
tures developed in previous works, (2) MFCC, (3) the spectral pow-
ers with the linear-scaled frequencies, and (4) the spectral powers
with the Mel-frequencies.

Empirical features

Most speech/music discrimination systems adopt features that
are empirically designed to emphasize differences between speech
and music sounds. We call them “empirical features” in this paper.

Here, we focus on six features from the seven used by Scheirer
et al. [9]: 4-Hz modulation energy, the percentage of low-energy
frames, the spectral centroid, the spectral roll-off point, the spectral
flux, and the zero-crossing rate. Some of these features also used in
musical genre classification systems [4].

In addition, we adopt a feature proposed by Minami et al. that
represents the intensity of the edge in the time direction of a sound
spectrogram [7]. We call this feature the “spectral edge” in this
study.

The first six features are based on the definition by Scheirer et
al. [9] and Tzanetakis et al. [4], and the last one is based on that by
Minami et al. [7], with minor modifications.

• 4-Hz modulation energy: 4-Hz periodicity of each frequency
channel in the spectrum. First, for each frequency channel,
a bandpass filter bank with center frequency of 4 Hz is ap-
plied. Next, powers of all channels are averaged through
frames within a window around the focusing frame and the
value is normalized using the average power of the spectrum
within the window.

• Percentage of low energy frames: The proportion of frames
where the square root of averaged signal power (RMS power)
is less than 50 % of RMS power within a window around the
frame of interest.
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• Spectral centroid: The spectral centroid denotes the fre-
quency index located on the center of gravity of the spectrum.

• Spectral roll-off point: The spectral roll-off point is a fre-
quency index that denotes the 95% point of the magnitude of
the spectrum.

• Spectral Flux: The spectral flux denotes the difference in the
magnitude of the spectrum from the preceding frame.

• Zero-crossing rate: The zero-crossing rate denotes how often
the original audio signal changes its sign within the frame.

• Spectral edge: The spectral edge at t-th frame Et denotes the
intensity of the edge on a spectrogram:

Et =

NX

i=1

˛̨
˛̨
˛

t+wX

j=t−w

(Sj [i − 1]− 2Sj [i] + Sj [i+ 1])

˛̨
˛̨
˛ , (1)

where Sj [i] denotes the spectral power of the i-th frequency
channel at the j-th time frame and w determines the window
size.

Finally, we generate a 14-dimensional feature vector by adding
a variance of each feature calculated from frames within a window
around the frame of interest.

Mel-frequency cepstral coefficients

A MFCC is a feature related to the perceptual scale of pithes (Mel-
scale). This feature is commonly used in speech recognition systems
and also in some speech/music discrimination systems [5][6].

Typically, low-order coefficients are used for discrimination [4].
However, it is not known which coefficients are efficient for back-
ground music detection. In this step, we first use 80 coefficients
calculated from 80 filter banks for the feature set. In the dimension
reduction scheme in the next step, a small number of components
efficient for the discrimination are extracted.

For all MFCCs, we calculate the variances using frames within
a window around the focusing frame and add them to the MFCC
feature set. For the MFCC feature set, a 160-dimensional vector is
generated.

Linear frequency spectral powers

The last two feature sets are based on spectral powers. The first set
is calculated using frequency bands equally spaced in the frequency
direction. To obtain this set, a power spectrum is calculated by short-
time Fourier transform (STFT). Then, values within each frequency
band are averaged and a 80-dimensional feature vector is again gen-
erated.

Mel-frequency spectral powers

In the second set, another 80 frequency bands are located in the Mel-
frequency scale. It is intermediately produced in the MFCC calcula-
tion. The frequency bands are closely allocated in the low-frequency
region and sparsely allocated in the high-frequency region.

Then, we generate a 160-dimensional vector by adding the vari-
ance of each frequency band power as well as the MFCC feature
set.

2.2. Dimension reduction by Fisher’s criterion and PCA

Each frame of an audio signal is represented by a high-dimensional
vector, especially when MFCC or spectral powers are used. Us-
ing all elements for statistical learning, the classification accuracy
may be degraded due to so called “curse of dimensionality”, such
as over-training for complicated models. To avoid this problem, a

dimension reduction process is executed before applying statistical
learning methods.

We implemented the process using two approaches. The first
is the feature selection by which significant features for the classi-
fications are selected. For this purpose, a method based on Fisher’s
criterion [10] or one that finds effective features by repeating classifi-
cation trials by adding features recursively [11] have been proposed.

Here, we adopt a feature selection method based on Fisher’s cri-
terion for low computational cost. Fisher’s criterion represents the
degree of separation of two classes by using a single feature and is
defined as

F =
(x̄1 − x̄0)

2

σ2
1 + σ2

0

, (2)

where x̄c and σc are the mean value and variance for class c of the
focusing feature.

The second approach is the principal component analysis (PCA),
which is commonly used for dimension reduction. The PCA maps
high-dimensional vectors onto a low-dimensional subspace accord-
ing to the distribution.

2.3. Discrimination by statistical learning methods

We tested the GMM and k-NN to discriminate frames containing
music from those not containing music. They classify the t-th frame,
using feature vector xt, into two classes, ω1 and ω0, which represent
whether a frame contains musics or not, respectively.

The GMM represents the probability density of each class as a
weighting addition of multiple Gaussian distributions. The GMM
probability density for a class ωc is defined as

p (x|ωc) =

KX

l=1

πlN (x|μc
l ,Σ

c
l ) , (3)

where K is the number of Gaussian distributions composing the
mixture. N (x|μc

l ,Σ
c
l ) denotes a Gaussian distribution with a mean

vector μc
l and a covariance matrixΣc

l . The value of πl is the mixing
coefficient of l-th Gaussian distribution and πl satisfies 0 ≤ πl ≤ 1
and

PK
l=1 πl = 1.

When the number of mixtures K is given as a hyper parameter,
μc

l and Σc
l can be estimated by the expectation maximization (EM)

algorithm. In the classification stage, the system discriminate the
music frame according to p(x|ωc).

The k-NN is a method that calculates the distances between the
test sample and every training sample and determines the class by
majority vote using the classes of the nearest k samples. We simply
use the Euclidian distance as the distance measure in this study.

3. EXPERIMENTS

3.1. Preparing musical audio overlapped by speech

To carry out the examination systematically, we prepared musical
audio signal overlapped by speech signal with various amplitudes
and also prepared pure speech signal. The system discriminates
music-containing parts from pure speech parts.

For music data, we used 30 musical pieces in the RWC Mu-
sic Database: Music Genre (RWC-MDB-G-2001) [12]. The pieces
were selected from various genres, such as popular, rock, dance
music, jazz, classical music, and world music. We extracted a 30-
second-long audio signal for each of the 30 pieces.

For speech data, we used ten conversation sessions from the Cor-
pus of Spontaneous Japanese (CSJ) [13]. It includes the voices of
seven females and five males. Five conversation sessions were used
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for the pure speech part. We extracted 900-second-long speech au-
dio signals from these sessions. The remaining five conversation
sessions were used to overlap the music parts.

Ten data variations were prepared according to the ratio of the
amplitude of music signals to the speech, namely, –30, –20, –10,
–3, 0, +3, +10, +20, +30, and +∞ dB. We call this ratio the “mu-
sic/speech ratio” in this study. Then, “+∞ dB” means that the music
parts consist of pure music and do not include speech. This is the
same condition as in previous works for speech/music discrimina-
tion.

All audio signals were resampled at 12 kHz and normalized us-
ing mean and variance for every musical piece or conversation ses-
sion. Each conversation session was divided into 30-sec-long seg-
ments. The divided conversation sessions and the 30-sec-long musi-
cal pieces were arranged alternately.

Then, we generated the four feature sets determined in the pre-
vious section: the spectral powers from the linear-scaled frequency
(SPEC), the spectral powers with the Mel-frequencies (SPMF),
MFCCs, and the empirical features (EMPR). All features were ex-
tracted at every 50 msec-long frame. A 2.0-sec-long window around
each frame was used for variance calculation.

To obtain SPEC, we used 1,024-sample-long window for the cal-
culation of FFT and the spectral power in dB was averaged every six
frequency bands. The first 80 elements were used for SPEC.

For the calculations of the 4-Hz modulation energy, the percent-
age of low-energy frames, and the spectral edge in the empirical fea-
tures, a 1.0-sec-long window is applied.

Using Fisher’s criterion or PCA, the dimension was reduced to
3, 5, 10, and 20.

3.2. Discriminating music frames

We evaluated the music detection accuracy for all combinations of
the four feature sets and discrimination methods. We examined k =
1, 3, 5, and 7 for the k-NN and the number of Gaussian mixturesK
= 1, 3, 5, and 7 for he GMM. For one Gaussian model (K = 1), we
used mean vectors and covariance matrices directly calculated from
vectors in training data.

When applying the k-NN, every feature was normalized using
mean and variance in the time direction to adjust the scale of fea-
tures.

The evaluation was performed using a five-fold cross validation.
In the data, the test set does not include frames from the same musi-
cal pieces or conversation sessions as the training set. Additionally,
we randomly selected a music/speech ratio at each frame in the mu-
sic part of training data, considering a practical use.

We used all frames in the training set for GMM learning, and
used 4,000 frames randomly selected from the training set for k-NN
to reduce computational cost.

Figure 1 shows the error rates against the music/speech ratio us-
ing (A) GMM and (B) k-NN. For each feature set, the best com-
bination of parameters, namely, the number of reduced dimension,
feature reduction method, and the number of Gaussian mixtureK or
nearest neighbor k, are investigated.

Using GMM, every feature set, especially the EMPR, achieves
a very low error rate when the music/speech ratio is higher than
0 dB. However, when the music/speech ratio falls under 0 dB, the
EMPR gets degraded rapidly. This indicates that a lot of characteris-
tics based on the difference between music and speech audio signals
disappears when speech and music are mixed.

On the contrary, simple spectral powers based on the Mel-
frequency scale give very low error rates through whole mu-
sic/speech ratio. The MFCC did not improve the accuracy.

When k-NN is applied, the SPMF yielded the lowest error rate
with GMM as well. And the SPEC and the EMPR did not work well.
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Fig. 1. Error rate of frame classification using (A) GMM and (B)
k-NN. “Dim” denotes the number of dimensions extracted. For
each feature set, the best parameter combination through the mu-
sic/speech ratio is used. Fisher’s criterion is used for SPEC and
EMPR with k-NN and the PCA is used for all remaining sets.

In the experiment, the accuracy of k-NN was worse than GMM. It
may be improved by using more training frames or refining the scal-
ing.

On the whole, a complicated learning model ( e.g. K=7 of the
GMM ) with fewer dimension achieves good classifiers.

3.3. Effect of dimension reduction

Table 1 shows effects of the dimension reduction process with GMM
(K = 3) using a data set of a –10 dB music/speech ratio. For every
feature set, the accuracy is improved by reducing the dimension us-
ing both Fisher’s criterion and PCA.

When feature selections are performed using Fisher’s criterion,
three dimensions yield the best accuracy for all data sets. This indi-
cates that we can construct a discrimination system using only a few
informative features.

Also, when otherK values are used, similar tendencies as those
shown in Table 1 were found. On the whole, the model becomes
complicated, with larger K, the effect of the dimension reduction
increases.

Table 2 shows the top seven features that have high Fisher’s
criterion values from EMPR. The values in the table are averaged
Fisher’s criterion values calculated from frames used as training data
of five-fold cross-validation.

In the case of pure speech/music discrimination ( +∞ dB ), vari-
ance of spectral flux, percentage of low-frequency energy, and 4-Hz
modulation energy yield a high Fisher’s criterion. This is consistent
with the results shown by Scheier et al. [9] However, when speech
overlaps the music with large amplitude, some features, such as per-
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Table 1. Error rates for the number of dimensions reduced by
Fisher’s criterion and PCA, using the –10 dB test set. This table
shows the effect of dimension reduction for each feature set. The
best number of dimensions for each feature set is indicated by bold
font.

Feature Reduction # of dimension
set method 3 5 10 20 All
SPMF Fisher 0.15 0.16 0.18 0.23 0.27

PCA 0.14 0.13 0.14 0.17
MFCC Fisher 0.16 0.16 0.18 0.23 0.27

PCA 0.16 0.15 0.15 0.17
SPEC Fisher 0.19 0.23 0.29 0.28 0.50

PCA 0.22 0.22 0.25 0.30
EMPR Fisher 0.19 0.24 0.24 – 0.34

PCA 0.24 0.24 0.23 –

Table 2. Fisher’s criterion of the empirical features [F in eq. (2)].
Top seven features from 14 empirical features of training data are
shown. “Mixed” indicates training data that includes every mu-
sic/speech ratio and “Var.” means variance.

.

music/music ratio +∞ dB –20 dB Mixed
Var. spec. flux 1.40 0.28 1.08
Spectral edge 2.90 0.16 1.07
Low-energy frame 1.57 0.00 0.72
4-Hz modul. energy 0.11 0.21 0.40
Var. spec. roll-off 0.52 0.14 0.37
Var. spec. cent. 0.48 0.00 0.25
Var. low-energy frame 0.15 0.02 0.17

centage of low-frequency energy and variance of spectral centroid,
are significantly degraded. This explains why empirical features fails
under the low music/speech ratio conditions.

For other feature sets, when Fisher’s criterion is used, vari-
ances of spectral powers within lower frequency channels (SPMF
and SPEC) and variances of low-order coefficients (MFCC) are
extracted as top features.

3.4. Effect of post-processing

The accuracy can be improved by applying a post-processing to the
frame-by-frame discrimination results as shown in previous works
for speech/music discrimination [9].

We simply employed a smoothing process as a post-processing.
A 4-sec-long window was applied to each frame. Then, the exis-
tence of music was determined by the proportion of frames within
the window that were classified into music in the previous discrimi-
nation step. A threshold Θ = 0.4 was used.

Table 3 shows error rates with or without the post-processing for
each feature set. It indicates that the accuracy of background music
detection can be improved by about four to six percent, for every
feature set, with the post-processing based on a simple smoothing
scheme.

4. CONCLUSION

We have proposed a music detection method that is effective even
when loud interfering sounds simultaneously exist. The robustness

Table 3. Error rates with and without the post-processing. Test data
sets with –10 dB music/speech ratio and the same parameters as Fig.
1 are used.

SPMF MFCC SPEC EMPR
With post-processing 0.08 0.09 0.18 0.12
W/o post-processing 0.12 0.15 0.22 0.18

was obtained by the use of the spectral powers with Mel-frequency
scale with a GMM-based discriminator. We showed that the accu-
racy of the proposed method is better than the case where the empir-
ically designed features are used. We also found that the PCA-based
dimension reduction effectively works and the number of dimen-
sions can be reduced down to five. With a simple post processing,
we achieved a framewise error rate as low as 8 % even when the
music/speech ratio is –10 dB, which is the case where the interfering
speech is significantly louder than the target music. Future work will
include refining the learning and post-processing methods to further
improve the accuracy.
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