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ABSTRACT

There has been much recent progress in the technical infrastructure
necessary to continuously characterize and archive all sounds, or
more precisely auditory streams, that occur within a given space or
human life. Efficient and intuitive access, however, remains a con-
siderable challenge. In specifically musical domains, i.e., melody
retrieval, query-by-example (QBE) has found considerable success
in accessing music that matches a specific query. We propose an ex-
tension of the QBE paradigm to the broad class of natural and envi-
ronmental sounds, which occur frequently in continuous recordings.
We explore several cluster-based indexing approaches, namely non-
negative matrix factorization (NMF) and spectral clustering to effi-
ciently organize and quickly retrieve archived audio using the QBE
paradigm. Experiments on a test database compare the performance
of the different clustering algorithms in terms of recall, precision,
and computational complexity. Initial results indicate significant im-
provements over both exhaustive search schemes and traditional K-
means clustering, and excellent overall performance in the example-
based retrieval of environmental sounds.

Index Terms— Acoustic signal analysis, Database query pro-
cessing, Clustering methods, Hidden Markov models

1. INTRODUCTION

Consistent improvements in audio processing, storage, and record-
ing technology along with decreases in cost for the necessary hard-
ware, currently allow for continuous, high-fidelity archival of all
sounds, or more precisely auditory streams [1], occurring within a
given space or human life [2, 3, 4]. These comprehensive audio his-
tories allow the format of the archived recordings to dictate what
events are important, as opposed to preconceived decisions control-
ling what is recorded. Thus, continuous, comprehensive archival
(CCA) often provides a more holistic picture of the auditory scene
by allowing the context of an audio event to be retrieved along with
the event of interest. Although there are many advantages to CCA,
its usefulness is often limited in practice due to the prohibitive size of
the continuously growing archive. For this reason, robust, intuitive,
and efficient audio information retrieval strategies are needed.

In order to provide intuitive retrieval, the query by example
(QBE) paradigm is often with much success in navigating large
music databases using melody content in query by humming (QBH)
systems. Unfortunately, QBH methods are rather specialized to mu-
sical sounds where higher-level features such as melody and rhythm
are salient. Audio fingerprinting techniques have achieved much
success in seeking ”exact matches” for databases of both music [5]

and more general audio [6], with relatively low search complexity
and without utilizing high-level melodic information. However,
these techniques require the user to have a specific, well-formed
example of what they seek, which is not always an accurate assump-
tion. An alternative approach consists of construction of dynamic
probabilistic models for all sounds in a database, whose models are
evaluated and ranked in terms of likelihood for a specific query. This
allows for explicit compensation for imperfections and uncertainties
in user queries [7, 8], while also providing accurate retrieval of
sounds that are perceptually similar (inexact matches) to the query.
For all audio information retrieval algorithms discussed up to this
point, search complexity increases dramatically as the size of the
database grows. Assuming that a given query is relevant to only a
small percentage of sounds in the database, then clearly search time
can be greatly reduced by recursively dividing the audio archive into
clusters of perceptually similar sounds, and only searching those
clusters that are perceptually related to the given query.

This paper provides an extension of our previous work in devel-
oping a flexible, distortion-aware QBE system for natural and envi-
ronmental sounds [8]. Specifically, we present a novel semi-metric
for calculating a distance matrix from the probabilistic models that
index all archived sound files in a database. Two clustering methods,
namely, Non-negative matrix factorization and spectral clustering,
are applied to this distance matrix to partition the audio database
for efficient search. Non-negative matrix factorization (NMF), de-
composes the distance matrix into both bases and encoding coef-
ficient matrices, where all elements of both factored matrices are
constrained to be non-negative. Spectral clustering, transforms the
distance matrix into a scaled affinity matrix and uses the dominant
eigenvectors of this affinity matrix to cluster the data.

In describing our approach we begin with a brief review of the
extraction of low-level feature trajectories, which are specifically tai-
lored to natural sound environments in Section 2. As discussed in
Section 3, each sound in the archive is indexed with a hidden Markov
model (HMM) that incorporates general trends in feature trajecto-
ries (constant(low/high), up, down or fluctuating) and is robust to
time-warping distortion. Once presented with a query, our system
extracts feature trajectories from that query, and retrieves sounds in
ranked order in terms of likelihood as their corresponding HMM is
evaluated using the query features as observations. Algorithms that
improve retrieval speed by clustering all sounds in the database into
perceptually similar groups are discussed in Section 4. The results of
Section 5 show that clustering schemes based on matrix factorization
compare favorably with brute force retrieval and traditional K-means
clustering in terms of recall, precision, and computational complex-
ity. Additionally, our preliminary results demonstrate that our query
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by example architecture is successful for the difficult classes of nat-
ural and environmental sounds.

2. FEATURE EXTRACTION

The audio features used to characterize the dynamic trajectories of
both the queried and archived sound files were shown in [2] to rep-
resent a large variety of sounds without specifically assuming partic-
ular categories, (e.g., speech, music). Due to the diversity of sounds
under consideration, we have found it necessary to calculate features
at time scales from 40ms (short-term) to one second (long-term). In
our study we use five short-term features: RMS level, Bark-weighted
spectral centroid, spectral sparsity (the ratio of �∞ and �1 norms
calculated over the short-time Fourier Transform (STFT) magnitude
spectrum), transient index (the �2 norm of the difference of Mel fre-
quency cepstral coefficients (MFCC’s) between consecutive frames),
and harmonicity (a probabilistic measure of whether or not the STFT
spectrum for a given frame exhibits a harmonic frequency struc-
ture). The long-term feature temporal sparsity (the ratio of �∞ and
�1 norms calculated over all short-term RMS levels computed in a
one second interval), rounds out our feature set. A detailed descrip-
tion of how all features are computed is given in [2].

Short-term features are computed either directly from the win-
dowed time series data or via STFT using overlapping 40ms Ham-
ming windows hopped every 20ms. Long-term features are com-
puted using a sliding window to combine the data from 49 of the
40ms windows. Using 98% overlap for the sliding window, (i.e.,
slide in 20ms steps), both long and short-term features remain syn-
chronous. Once the features for a given sound file are computed,
each trajectory is then pre-filtered using a fourth order Savitsky-
Golay smoother [9], which returns not only the filtered trajectory,
but also an estimate of its derivative.

3. LIKELIHOOD-BASED RETRIEVAL

Letting t ∈ 1:T be the time index of the audio frame, for a query of
length T , and i ∈ 1 : P be the feature index (P = 6 in our experi-

ments), we define Y
(i)

t = [x
(i)
t , ẋ

(i)
t ]′, as the observed feature vector

at time t. Here, x
(i)
t denotes the inherent feature value and ẋ

(i)
t its

derivative. We assume that all features are statistically independent,
i.e,

P (Y
(1:P )
1:T |λ(1:P )(n)) =

P∏

i=1

P (Y
(i)
1:T |λ(i)(n)) (1)

where Y
(1:P )
1:T are the observed features from the sound query, n is

the index of the archived sound n ∈ 1:N in a database of N sounds,
and λ(i)(n) is a HMM estimated from the ith feature trajectory of

archived sound n. Details on the estimation of λ(i)(n) and computa-
tion of (1) using a HMM is described in detail in [8] and summarized
below.

3.1. Probabilistic Model Construction

A HMM is created by fitting constant, linear, and parabolic least

squares (LS) polynomials to each smoothed feature trajectory, Y
(i)
1:T .

These polynomial fits entale the general trends in the feature tra-
jectories (constant(low/high), up, down or fluctuating) that the user
is likely to remember. The trend type is obtained through the or-
der of the polynomial fit, which is determined via the Akaike in-
formation criterion [10]. Next, we define the discrete hidden state

Fig. 1. Markov transition diagrams for S
(i)
t under the three pos-

sible polynomial fits of the feature trajectories.

(mode) S
(i)
t whose Markov transition diagrams for constant, lin-

ear, and quadratic fits, are shown in Figures 1(a), (b), and (c), re-
spectively. The states of the HMM represent equally spaced sample
points from the polynomial fit of the observation trajectory that ac-
curately capture the overall trend of each feature. The state transition

probabilities, P (S
(i)
t+1 = a|S(i)

t = b) = pba, a, b ∈ 1 : 5 (Figure
1) are assumed to originate from a Poisson process, where the ex-

pected time a sound remains at any one value of S
(i)
t is dependent

on the length of the sound and the shape of the polynomial fit. In
order to use a HMM framework to compute (1), we let the emission

probability distribution be P (Y
(i)

t |S(i)
t ) = N (μ(S

(i)
t ), Σ(i)) with

μ(S
(i)
t = a) being the value of the fitted curve when S

(i)
t = a,

while covariance matrix Σ(i) is estimated from the residuals of the
observation trajectory and the optimal polynomial fit. The prior

P (S
(i)
1 = 1) = 1 is chosen so that likelihoods are always computed

assuming the observation starts at the beginning of its trajectory.

4. LIKELIHOOD-BASED CLUSTERING

The observed feature values Y
(i)

t are not used to cluster percep-
tually related sounds. Instead we construct a new discrimina-
tive space using the log-likelihood values obtained by evaluating
the HMM of each sound using the feature trajectories from all
other archived sounds. The clustering procedure first obtains the

log-likelihood values L(i, j) = log P [Y
(1:P )
1:T (i)|λ(1:P )(j)] =∑P

k=1 log P [Y
(k)
1:T (i)|λ(k)(j)] for i, j ∈ 1 : N , by computing the

likelihood of the ith observation trajectory using the jth HMM.
In the literature [11] the distance measure D(i, j) = [L(i, j) +
L(j, i)]/2 is used to form the symmetric N × N distance matrix
D, whose columns are used to cluster the data. The clustering
algorithms considered in this paper are generally used in a metric
space (most often the n-dimensional Euclidean space R

n), but this
distance measure does not satisfy the triangle inequality, can be
negative, and is non-distinguishable. Thus, we attempt to improve
clustering performance by introducing a semi-metric and defining
the elements of D as

D(i, j) = L(i, i) + L(j, j) − L(i, j) − L(j, i). (2)

Although the semi-metric in (2) does not satisfy the triangle inequal-
ity, its properties are: symmetry D(i, j) = D(j, i), non-negativity
D(i, j) ≥ 0, and distinguishability D(i, j) = 0 iff i = j. Once
construction of the distance matrix D is complete, clustering is per-
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formed on the columns of D using either of the following algo-
rithms.

4.1. Non-negative Matrix Factorization (NMF)

Given a N ×N non-negative matrix D, NMF [12] finds the non-
negative matrix factors W ∈ R

N×K and H ∈ R
K×N such that,

D ≈ WH, where K << N is typically chosen as the number
of clusters [13]. As there are fewer columns in W as opposed to
D, the columns of W can be regarded as the basis vectors for D.
On the other hand, each column in H contains the coefficients rep-
resenting the degree to which each data point vector is associated
with the K clusters. In this work we decompose D to obtain K basis
vectors capturing the perceptual qualities of each sound cluster , and
each sound is represented as an additive combination of the percep-
tual bases. The basic steps in our clustering application of NMF are
summarized as follows:

1. Select the number of clusters K.

2. Apply NMF iterative updating scheme [12, 13], which de-
composes the distance matrix as D ≈ WH.

3. Assign sound n to cluster k if Hkn > Hjn for j ∈ 1 : K,
where Hkn are the elements of H.

4.2. Spectral Clustering

Spectral clustering refers to a broad family of algorithms where the
dominant eigenvectors of a matrix containing some measure of the
distance between points are used to partition data sets into clusters.
In this work we use the specific spectral clustering algorithm of [14]
as follows:

1. Use local scaling [14] to form the N × N affinity matrix A,
whose elements are obtained from the distance matrix D,
i.e., Aij = exp(−D2(i, j)/[D(i, iM )D(j, jM )]). Where
iM and jM are the M th nearest neighbor of sound i and j,
respectively (M = 10 in this work).

2. Define B to be the diagonal matrix with Bii =
∑N

j=1 Aij

and construct the matrix J = B−1/2AB−1/2.

3. Select the number of clusters K.

4. Find the K largest eigenvectors of J and stack the eigenvec-
tors in columns to form the N × K matrix F.

5. Re-normalize each row of F to be of unit length to form the
N×K matrix G, whose elements are Gij = Fij/(

∑
j F 2

ij)
1/2.

6. Treat each row of G as a data point in R
K and cluster via

K-means or EM algorithms.

7. Assign sound i to cluster k iff the ith row of G was assigned
to cluster k.

Once clustering is complete, a HMM is constructed as described
in Section 3.1 for each cluster using the observation trajectories of
all sounds belonging to that cluster. All sounds belonging to the
cluster for which the HMM exhibits the largest likelihood for a given
query are returned in ranked order according to the HMM likelihood
calculated using the query features as observations. As the size of
the database grows, clusters can be further divided into sub-clusters
by recursively applying aforementioned clustering procedures on the
original cluster.

5. PRELIMINARY RESULTS

We have applied the likelihood based retrieval algorithm discussed
in the previous sections to an audio database of 102 natural and envi-
ronmental sounds recorded using different microphones and in var-
ious environments. All files were captured at 16bits/44.1kHz, un-
compressed. The database can be loosely partitioned into five se-
mantic categories: speech sounds, machine sounds, water sounds,
whistle/animal sounds, and rhythmic sounds. We chose five exam-
ple queries and had four users (adults with no known hearing im-
pairments) rank all database sounds as relevant/non-relevant for each
example query. The five example queries were: a whistle, a human
imitation of a dog howl, air conditioner buzz recorded outside on a
windy day, rhythmic footsteps, and a child speaking. During the user
study we instructed participants to listen to each of the 102 archived
sounds, and record whether or not in their opinion, each archived
sound could be considered relevant to one or more of the five exam-
ple queries.

In this test, we set the number of clusters to five and eight due to
prior knowledge of the types of sounds in the database. Our database
can be loosely partitioned into five semantic categories, but sounds
in a given semantic category can sound perceptually very different
from each other, e.g., rainfall, a dripping sink, and a flushing toilet
are all water sounds, which have very different auditory character-
istics. It is possible, however, to organize all database sounds into
eight clusters where sounds belonging to the same cluster are both
perceptually and semantically conjoined. The incorporation of se-
mantic information as a way to improve audio retrieval performance
as discussed in [15], remains a topic of future work.

We then benchmarked the performance of the NMF and spec-
tral clustering algorithms, with exhaustive search and K-means al-
gorithm using precision and recall criteria. Figures 2(a)-(d) show
the recall and precision curves averaged over all queries and user
rankings when the 102 sounds in the database are divided into either
five or eight clusters. For the exhaustive search the likelihood for a
specific query is evaluated with respect to the HMM for all sounds
in the database, and the sounds are returned in ranked order. For the
retrieval with cluster-based indexing, the HMM for each cluster is
evaluated with respect to the query observation sequence, and only
the most likely cluster has the likelihood of all of its member HMMs
evaluated and ranked, with the sounds not in the chosen cluster re-
turned in random order. We first show the successful performance
of our overall architecture for QBE of environmental sounds. By
examining the recall curves of Figures 2(a) and (b) we see that ap-
proximately 50% of the relevant sounds were retrieved among the
top 10, while from the precision curves of Figures 2(c) and (d) we
see that approximately 80% of the sounds ranked in the top five were
considered relevant. Considering the diversity of environmental and
natural sounds, these results are quite promising.

We also notice from Figures 2(a)-(d) that both recall and preci-
sion are improved for the top 10 returned sounds when the clustering
is applied. This fact indicates that the clustering procedure removes
sounds that are not perceptually relevant, but might contain feature
trajectories similar to a given query. When only five clusters are used
as shown in Figures 2(a) and 2(c), the K-means algorithm tends to
perform almost as well as the exhaustive search, because two of the
five clusters were far larger than the other three, and all the exam-
ple queries belong to one of the large clusters. When eight clus-
ters are used spectral clustering performs best as the chosen clusters
tended to be very perceptually accurate. From Figures 2(a)-(d) we
also see that spectral clustering tends to generally outperform NMF
in terms of accuracy, showing the importance of the affinity map-

7



0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Files Returned

R
ec

al
l

Spectral
K−Means
NMF
Exhaustive

(a) Recall (5 Clusters)
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(b) Recall (8 Clusters)

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Files Returned

P
re

ci
si

on

Spectral
K−Means
NMF
Exhaustive

(c) Precision (5 Clusters)
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Fig. 2. Recall and precision curves averaged over five example
queries and four user relevancy rankings, comparing three clus-
tering algorithms with brute force search for five and eight clus-
ters.

ping to clustering environmental sounds, and the difficulty of find-
ing a low-dimensional perceptual basis for the broad class of natural
sounds using NMF.

As a final comparison of how the clustering algorithms explored
in this paper perform in a QBE system, we compare the number of
HMM likelihood computations for the different algorithms and num-
bers of clusters in Table 1. The number of likelihood computations
necessary for a given query is ψ = |C| + K, where |C| is the num-
ber of sounds in the cluster to which the query most likely belongs.
The values in this table are computed by using our 5 example queries
plus all 102 sounds in the database as queries, and then computing
the average number of likelihood computations for a given cluster-
ing algorithm and number of clusters. Examining Table 1 we see that
all clustering algorithms far outperformed exhaustive search in terms
of computational complexity and K-means tended to have the high-
est computational complexity for the explored clustering algorithms,
because it tended to partition the space into a few very large clusters
and several very small clusters. Although NMF tended to not per-
form as well in terms of precision and recall, it appears to find the
clusters that are most computationally efficient, i.e., it partitions the
database into clusters of approximately equal size.

Table 1. Average number of likelihood calculations for different
indexing schemes and cluster numbers.

Exhaustive K-Means Spectral Clustering NMF

K = 5 102.00 37.15 32.42 28.28

K = 8 102.00 28.05 31.26 23.11

6. CONCLUSIONS AND FUTURE WORK

For large databases of natural and environmental sounds flexible
QBE architectures that are not tailored to speech or music sounds

are necessary to provide satisfying results to human users. We show
in this paper the utility and successful application of a cluster-based
QBE system for improved retrieval of environmental sounds, whose
complexity can remain tractable even as the number of sounds in
the database grows exceedingly large. The success of our proposed
scheme on environmental sounds has inspired exploration of a multi-
modal (sound and gesture) QBE system as a topic of future work.
We are currently developing a flexible semantic network represen-
tation which incorporates user-defined tags and relationship types.
This representation is fully compatible with all clustering methods
as well as the aforementioned QBE architecture.
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