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ABSTRACT

Defining suitable features for environmental sounds is an impor-
tant problem in an automatic acoustic scene recognition system. As
with most pattern recognition problems, extracting the right feature
set is the key to effective performance. A variety of features have
been proposed for audio recognition, but the vast majority of the
past work utilizes features that are well-known for structured data,
such as speech and music, and assumes this association will transfer
naturally well to unstructured sounds. In this paper, we propose a
novel method based on matching pursuit (MP) to analyze environ-
ment sounds for their feature extraction. The proposed MP-based
method utilizes a dictionary from which to select features, result-
ing in a representation that is flexible, yet intuitive and physically
interpretable. We will show that these features are less sensitive to
noise and are capable of effectively representing sounds that origi-
nate from different sources and different frequency ranges. The MP-
based feature can be used to supplement another well-known audio
feature, i.e. MFCC, to yield higher recognition accuracy for envi-
ronmental sounds.

Index Terms— Environmental sounds, feature extraction, audio
classification, auditory scene recognition, matching pursuit

1. INTRODUCTION

Recognizing the environment from sounds is a basic problem in au-
dio signal processing and has important applications in navigation
and assistive robotics and other mobile device-based services. The
audio scene denotes a location with different acoustic characteristics
such as a coffee shop, park, or quiet hallway. A stream of audio
data contains a significant wealth of information, enabling the sys-
tem to capture a semantically richer environment, on top of what
visual information can provide. Moreover, to capture a more com-
plete description of a scene, the fusion of audio and visual informa-
tion can be advantageous, such as for disambiguation of environment
and object types. Audio data could be obtained at any moment when
the system is functioning, in spite of challenging external conditions
such as poor lighting or visual obstruction, and is relatively cheap to
store and compute than visual signals. In order to use any of these
capabilities, we first have to determine the current ambient context.

Several features have been used to describe audio signals. The
features of choice for most audio recognition systems typically rely
on the use of mel-frequency cepstral coefficient (MFCC). The fil-
terbanks for MFCC are based on the human auditory system and
have been shown to work particularly well for structured sounds, like
speech and music, but their performance degrades in the presence of
noise. MFCC features are modeled based on the shape of the over-
all spectrum, making it more favorable for modeling single sound

sources. Environmental sounds, on the other hand, typically contains
a large varieties of sounds, including conditions that are character-
ized by narrow spectral peaks, such as chirpings of insects, which
MFCCs are unable to encode effectively. Other commonly-used
features for audio signals include LPC (Linear Prediction Coeffi-
cients), band energy ratio, frequency roll-off, spectral centroid, spec-
tral bandwidth, spectral asymmetry, spectral flatness, zero-crossing,
and energy [1]. Many previous efforts utilize a combination of some,
or even all, of these features together, with intentions of representing
all aspects of the audio signals. More importantly, the problem of
using a large number of features is that there are many potentially
irrelevant features that could negatively impact the quality of clas-
sification. As the feature dimension increases, data points become
more sparse and some features are essentially noise.

Research on unstructured audio scene recognition has received
less attention when compared to structured audio analysis such as
speech or music. To date, only a few systems have been proposed
that investigate modeling using raw environment audio, without pre-
extracting specific events or sounds, especially those from produced
movies or television tracks. Sound-based situation analysis was in-
vestigated in [2] and in the domains of wearables and context-aware
applications [3, 4]. Because of randomness, high variance and other
difficulties in working with environmental sounds, the recognition
rates have been limited especially as the number of targeted classes
increases: around 92% for 5 classes [5], 77% for 11 classes [6], and
approximately 60% for 13 or more classes [2]. These works utilize
MFCCs and other commonly-used features as their feature extrac-
tion method.

This paper addresses the recognition of environmental sounds,
focusing particularly on feature extraction using the matching pur-
suit (MP) technique. MP provides a way to extract features that can
describe sounds where other audio features (e.g., MFCCs) fail. They
are more robust with respect to background noise. The contribution
of this paper is the novel use of MP for feature extraction and its ap-
plication to unstructured audio processing. We investigate a variety
of audio features and provide an empirical evaluation on fourteen
different types of environmental sounds. We will show that the most
commonly-used features do not always work well with environmen-
tal sounds. It will be shown that the MP-based feature can be used to
supplement another well-known audio feature, i.e. MFCC, to yield
higher recognition accuracy for environmental sounds.

2. FEATURE EXTRACTION WITH MATCHING PURSUIT

2.1. Matching Pursuit

Our goal is to obtain the minimum number of bases to represent a
signal, resulting in a sparse and efficient representation. This is an
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NP-complete problem. Various adaptive approximation techniques
have been proposed in literature, such as the method of frames, ba-
sis pursuit, matching pursuit, and orthogonal matching pursuits. All
these methods utilize the notion of a dictionary that allows the de-
composition of a signal by selecting basis from a given dictionary
to find the best basis set. Among these, MP is a more efficient, but
greedy, approach. By using a dictionary that consists of a wide vari-
ety of basis, MP provides an efficient way of selecting a small basis
set that would produce meaningful features as well as a flexible rep-
resentation. MP is sub-optimal in the sense that it may not achieve
the sparsest solution depending on the given dictionary. However,
as long as the dictionary is complete, the expansion is guaranteed
to converge to a solution where the residual signal has zero energy.
Elements in the dictionary are selected based on maximizing the en-
ergy removed from the residual signal at each step. Even with a few
steps, the algorithm is capable of yielding reasonable approximation
using only a few atoms. For further details, we refer to [7].

The MP result relies on the choice of the dictionary. A dictionary
is a set of basis (or simply parameterized waveforms) for obtaining a
linear combination to produce an approximated representation of the
signal. Several dictionaries have been proposed for MP, including
frequency dictionaries (e.g., Fourier), time-scale dictionaries (e.g.,
Haar), time-frequency dictionaries (e.g., Gabor). Most dictionaries
are complete or overcomplete. It is important for atoms in the dic-
tionary to be discriminative among themselves; otherwise, similar
atoms will compete with each other in the MP process, resulting in
low weight value distributed among their coefficients. We will go
over the Gabor function in more detail, as it will become more rele-
vant to the details of our feature extraction method.

2.2. Time-Frequency Dictionaries

A combination of both time and frequency functions can be demon-
strated in the Gabor dictionary. Gabor functions are sine-modulated
Gaussian functions that have been scaled and translated, provid-
ing joint time-frequency localization. From [7], the Gabor function
is defined as gs,u,ω,θ (t) = Ks,u,ω,θ g( t−u

s
)cos[2πω(t − u) + θ]

with g(n) = 1√
s
e−πt2 and Ks,u,ω,θ is such that ||gs,u,ω,θ ||2 = 1,

where γ = (s, u, ω, θ) denotes the parameters to the Gabor func-
tion, with s, u, ω, and θ corresponding to an atom’s position in
scale, time, frequency, and phase, respectively. The Gabor dictio-
nary in [7] was implemented with the parameters of atoms chosen
from dyadic sequences of integers. N is the size of the atom for
which the dictionary is constructed. Scale s, which corresponds to
atom’s width in time, is derived from the dyadic sequence s = 2p ,
where 1 ≤ p ≤ m and atom size N = 2m.

(a) (b)
Fig. 1: (a) Decomposition of signals using MP (the first five bases) with dictionaries
of: (a) Fourier (left), Haar (middle), and Gabor (right), and (b) approximation (recon-
struction) using the first ten coefficients from MP with dictionaries of Gabor(top), Haar
(middle) and Fourier (bottom).

Fig. 2: Decomposition of a signal item from 6 different classes as listed, where the
top-most signal is the original, followed by the first five bases.

Examples of MP decomposition using the aforementioned dic-
tionaries are given in Fig. 1(a). Because of the nature of sine and
cosine functions, it makes the Fourier dictionary more suitable for
high frequency type of data, while the Haar wavelet dictionary is
better for more stable, lower frequency-type of signals. The Gabor
representation has advantages of these two dictionaries, character-
izing the signal in both the time and frequency domain, permitting
for a more general representation. Fig. 1(b) demonstrates the effec-
tiveness of reconstructing a signal using only a small subset of coeffi-
cients. Gabor atoms result in the lowest reconstruction error, as com-
pared with the Haar or Fourier transforms using the same number of
coefficients. Due to the non-homogeneous nature of environmental
sounds, using features with these Gabor properties we hypothesize
would benefit a classification system. It would provide the ability
to be flexible and to capture the time and frequency localization of
unstructured sounds, yielding a more general representation.

In the following, we will focus on using the Gabor function.
We chose N = 256 , m = 8 , ω = i2.6 , where 1 ≤ i ≤ 35
and distributed over [0, 0.5], u = {0, 64, 128, 192} and θ = 0. In
other words, a dictionary of 1120 Gabor atoms of length 256 were
generated by using atom scales of powers of two from 2 to 256 and
translation of a quarter of the atom. We use a logarithmic frequency
scale, where the frequency was chosen to be a parabolic function that
distributes frequencies in a manner to allow for a higher resolution of
histogram bins in lower frequencies and lower resolution in higher
frequencies. The reason for a more subtle granularity in the lower
frequencies is because more object types occur in these ranges, and
we wish to capture the finer differences between them. Since we
use discrete atoms, the choice of indices resolution will affect the
discriminative power of atoms. The phase was kept constant. We try
to keep the dictionary size small, since a large dictionary demands
higher complexity. Fig. 2 demonstrates a decomposition of a signal
using Gabor atoms. We observe differences in the bases between
different types of environmental sounds.

2.3. MP Features

Desirable types of features should be robust, stable, physically inter-
pretable, and sparse in the representation. We will show that using
MP will make achieving these requirements possible. One of the key
advantages of this representation is the ability to be potentially in-
variant to background noise and could capture characteristics where
MFCCs tend to fail. We use MP as a tool for feature extraction.
It provides an approximate representation and reduces the residual
energy with as few atoms as possible. We utilize the Gabor func-
tion due to its time-frequency localization property, and because it
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(a) (b)

Fig. 3: Examples of reconstruction using MP with the Gabor dicionary by varying the
number of atoms (bases).

is an overcomplete dictionary. Since MP selects atoms in the order
of eliminating the largest residual energy, it lends itself in provid-
ing the most useful basis, even just after a few iterations. We could
view each of these bases as a contribution toward the approximation,
or the overall reconstruction process. Atoms with the highest resid-
ual are assumed to represent the most important and stable signal
structures and, therefore, the highest contribution to the decompo-
sition (reconstruction). We demonstrate the effectiveness of using
MP with the Gabor function in Fig. 3. As shown in Fig. 3(a), the
biggest drop in the residual error happens in the first few terms. We
also observe from Fig. 3(b) that using only 10 atoms will provide
a reasonable signal; while using the first 50 atoms produces an ap-
proximation very similar to the original one.

The feature extraction process is given as follows. For each sam-
pling window, we decompose each segment using MP, stopping after
obtaining n atoms. We then decode each atom with its original pa-
rameters, obtaining the frequency, scale, and translation positions for
each atom. We accumulate all the atoms within a sampling window
and take the mean and standard deviation corresponding to the each
parameter separately.

Fig. 4 illustrates the classification performance as a function of
the number of atoms used in the feature extraction process. It shows
first a rise with increasing number of features due to the increased
discriminatory power. Then at some point, around 4 or 5 atoms,
the performance levels off. With a larger number of features, it in-
creases the complexity, framing it to be more specific to each data
item; thereby instances within a class appear more different from
one another. With smaller number of features, it allows the data to
be represented in a more general way. Therefore, we chose n = 5
atoms for our experiments. We use the same process to extract fea-
tures for both training and test data. The advantage of using just the
most prominent atoms makes the features more invariant to back-
ground noise variation. The idea is similar to that of choosing the
few largest peaks in an STFT frame, which would effectively be the

Fig. 4: Comparison of classification rates using the first 10 atoms as features while
MFCC is kept constant.

Gabor features with a fixed scale axis and without shift informa-
tion. The most important information in describing a signal could
be found in a few bases with the highest energies, and the process
in which MP selects these bases are exactly in the order in which it
eliminates the largest residual energy. This means that even the first
few atoms found by MP will naturally contain the most information,
making them to be significant features.

3. EXPERIMENTAL EVALUATION

We will investigate the performance of a variety of audio features
and provide an empirical evaluation on fourteen different types of
environmental sounds. In the experiments, we use two different clas-
sification methods: K-Nearest Neighbors (KNN) and Gaussian Mix-
ture Models (GMM) [8].

3.1. Experimental Setup

We use recordings of natural (unsynthesized) sound clips obtained
from [9, 10]. Our auditory environment types are chosen so that
they are made up of non-speech and non-music sounds. It is essen-
tially background noise of a particular environment, composed of
many sound events. We do not consider each sound event individ-
ually, but as the many properties of each environment. Naturally,
there could be infinitely many possible combinations. To simplify
the problem, we restrict the number of environment types we exam-
ined and enforce each type of sound to be distinctively different from
one another and to minimize overlaps, as much as possible. The con-
tent of each type should be homogenous enough so that they provide
typical representations for each environment. For example, we chose
only inside of a restaurant (instead outdoor sidewalk cafes) so that
we can only hear the sounds clinking of utensils and plates with in-
comprehensible people talking in the background, without any traf-
fic or birds sounds. These sound clips were of varying lengths (1-
3 minutes long), and were later preprocessed by dividing up into
4-second segments and downsampled to 22050 Hz sampling rate,
mono-channel and 16 bits per sample. Features were calculated from
a rectangular window of 256 points (11.6 msec) with 50% overlap.
Each 4-sec segment makes up an instance for training/testing. We
evenly distributed the data by randomly picking 100 4-sec segments
to make up each class. All data were normalized to zero mean and
unit variance. For KNN, we used the Euclidean distance as the dis-

Fig. 5: Overall recognition accuracy comparing MP, MFCC, and other commonly-used
features for 14 classes of sounds.
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Fig. 6: Overall recognition rate comparing 14 classes using MFCC only, MP only, and
MP+MFCC as features. (0% recognition for four classes using MFCC only: Casino,
Nature-nighttime, Train passing, and Street with ambulance.)

tance measure and the 1-nearest neighbor queries to obtain the re-
sults. As for GMM, we calibrated the number of mixtures for each
class to produce better overall results. We examine the proposed MP-
features from Section 2 and a variety of commonly-used features,
which includes MFCC (12), ΔMFCC (12), LPC (12), ΔLPC (12),
LPCC(12), band energy ratio, frequency roll-off set at 95%, spectral
centroid, spectral bandwidth, spectral asymmetry, spectral flatness,
zero-crossing, and energy. The fourteen environment types consid-
ered include: Inside restaurants, Playground, Street with traffic and
pedestrians, Train passing, Inside moving vehicles, Inside casinos,
Street with police car siren, Street with ambulance siren, Nature-
daytime, Nature-nighttime, Ocean waves, Running water/stream/river,
Raining/shower, and Thundering.

In the experiments, we utilized separate source files for training
and test sets. We kept the 4-sec segments that originated from the
same source file separate from one another. Each source file for
each environment was obtained at different locations. For instance,
the Street with traffic class contains four source files which were
labeled as taken from different cities. Because of the limited data, we
require that each environment contains at least four separate source
recordings. Segments from the same source file are considered a set.
Therefore, we used three sets for training and one set for testing.
The maximum amount of cross-validations we could perform on the
data was then limited to the minimum number of source files we
have. Therefore, we use a 4-fold cross-validation on the data for
the experiments. To keep the source files separated, we did not use
leave-one-out cross-validation because it makes the data instances
for training and testing to originate from the same source file.

3.2. Experimental Results and Discussion

For the experiment, we performed a 4-fold cross validation for the
MP-features and all the commonly-used features individually for
feature comparison. In this setup, none of the training and the test
items originated from the same source. Since the recordings were
taken from a wide variety of locations, the ambient sound might have
a very high variance. Results were averaged over 100 trials. Fig. 5
summarizes the findings. MP-features provided an overall classifi-
cation result of 72.5%, which is slightly higher than MFCC, 70.9%.
We ran the same experiments using the combination of all features
together, resulting in approximately 55.2% accuracy. The perfor-
mance produces poorer results than using the 12 MFCCs alone. How-

ever, when we combine the MP-features with MFCC by concatenat-
ing the two feature vectors together, we were able to achieve an ac-
curacy rate of 83.9% for discriminating fourteen classes, even with
separate source files for test and training sets. The reason for this
effect could be observed in Fig. 6, where we illustrate, in detail, the
recognition accuracy of each class. The figure shows that in cases
where MFCC did not perform well, MP features can compliment
the other, and vice versa. The clearest example is in the case of
the Nature-night-time class, which contains many insect sounds of
high frequencies. Unlike MFCCs which recognized 0% of this cat-
egory, MP features were able to capture the characteristics 100%.
A possible reason is its ability to capture narrow spectral peaks in
high frequency signals. In general, MFCCs tend to operates on the
extremes. MFCCs performed better than MP features alone in six
classes, but at the same time produced extremely poor results in
three other classes, with a recognition rate of 0% for four classes,
Casino, Nature-nighttime, Train passing, and Street with ambulance
and less than 10 percent for Thundering. On the other hand, MP
features perform better overall, with the lowest being 35% in two
classes (Restaurant and Thundering). Using the combination of both
MFCC and MP features, seven classes achieved classification rate of
above 90%. MFCC and MP-features provide a complimentary ef-
fect for one another, thereby correctly classifying the classes when
the features are combined.

Both MFCC and LPC are excellent representations when the
source properties are well behaved and consistent (such as in speech
and music). Therefore, they might not be well suited for generaliza-
tion. In a more realistic situation, what we may encounter will be
different than what the system is being trained on, such as the focus
of this paper. The goal of this work is to find the underlying struc-
ture that will allow us make generalization, even when faced with a
completely new location, but similar type of environment.

4. CONCLUSION

We proposed a novel feature extraction method that utilizes MP to
select a small basis set that would produce meaningful features. More
importantly, it is potentially invariant to background noise and could
capture characteristics in the signal where MFCC fails. To the best
of or knowledge, this was the first paper to propose using MP for fea-
ture extraction and has shown to be promising in classifying fourteen
different unstructured audio environments, outperforming the state
of the art results in comparable experiments. Our work provides
competitive performance for the multi-audio category environment
recognition by using a comprehensive feature processing approach.
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