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ABSTRACT

This paper proposes a method for the automatic transcription of the

bass line in polyphonic music. The method uses a multiple-F0 es-

timator as a front-end and this is followed by acoustic and musico-

logical models. The acoustic modeling consists of separate models

for bass notes and rests. The musicological model estimates the key

and determines probabilities for the transitions between notes using

a conventional bigram or a variable-order Markov model. The tran-

scription is obtained with Viterbi decoding through the note and rest

models. In addition, a causal algorithm is presented which allows

transcription of streaming audio. The method was evaluated using

87 minutes of music from the RWC Popular Music Database. Recall

and precision rates of 64% and 60%, respectively, were achieved for

discrete note events.

Index Terms— Music, Modeling, Hidden Markov models, Au-

dio systems, Viterbi decoding

1. INTRODUCTION

Bass line transcription refers to the automatic extraction of a para-

metric representation (e.g., a MIDI file) for the bass notes in a poly-

phonic music signal. The term bass line refers to an organized se-

quence of consecutive notes and rests played with a bass guitar, a

double bass, or a bass synthesizer. A note has a single pitch (a note

name), a beginning (onset) time, and an ending (offset) time. To-

gether with the melody, the bass line is an important characteristic of

a song in several music styles, especially in popular music. Bass line

transcription provides a useful tool for bass players and musicians,

music information retrieval applications, and music transcription and

analysis software.

Bass line transcription has been previously studied by Goto [1]

and by Hainsworth and Macleod [2]. Goto considered the funda-

mental frequency (F0) estimation of the bass and melody lines. The

method of Hainsworth and Macleod consisted of consecutive steps

of note onset location, note hypothesis generation, and determination

of bass notes from the hypotheses.

Figure 1 shows a block diagram of our transcription method. An

audio signal is processed frame-wise with two feature extractors: a

multiple-F0 estimator and an accent estimator. The acoustic model

uses these features to derive a hidden Markov model (HMM) for

bass notes and a Gaussian mixture model (GMM) for rests. The up-

per F0 limit is estimated frame-by-frame to reduce the interference

of other instruments. A musicological model uses the F0s to esti-

mate the musical key and to choose between-note transition proba-
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Fig. 1. The block diagram of the transcription method.

bilities which are modeled with a bigram or a variable-order Markov

model (VMM). Viterbi decoding finds a path through the models and

produces a transcribed sequence of notes and rests. An optional

post-processing step trains a VMM for the transcribed sequence and

uses it to determine transition probabilities during the second pass of

Viterbi decoding.

The architecture of the proposed method is similar to our method

for melody transcription [3]. However, the acoustic and musicologi-

cal models are tailored for bass line transcription and we investigated

the suitability of VMMs for capturing the repetitive nature of bass

note patterns. In addition, a causal algorithm is presented to enable

transcription of streaming audio.

For training and evaluating the method, we use the RWC (Real

World Computing) Popular Music Database consisting of 100 acous-

tic recordings of typical pop songs [4]. For each recording, the da-

tabase includes a MIDI file which contains a manual annotation of

the bass notes, hereafter referred to as the reference notes. We use

audio segments between 30 and 90 seconds of 87 recordings includ-

ing bass notes, resulting in 87 minutes of audio in total. We limit the

possible F0 range to 36–254 Hz, and remove reference notes outside

the range both from training and from evaluation (1.6% of the origi-

nal reference notes). On average, a song contains approximately 170

reference notes with a standard deviation of 80 notes.

2. FEATURE EXTRACTION

The front-end of the method consists of two frame-wise feature ex-

tractors: a multiple-F0 estimator and an accent estimator. Stereo

input audio is mixed to mono before feature extraction.
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2.1. Multiple-F0 Estimation

We use the multiple-F0 estimator proposed in [5]. Briefly, the method

calculates a harmonic transform of the Fourier spectrum and then

picks multiple F0 values by iterative detection and cancellation. The

estimator analyzes audio in overlapping 92.9 ms frames with 23.2 ms

interval between the beginnings of successive frames. The F0 search

range is limited to 36–254 Hz (MIDI notes 26–59). As an output,

the estimator produces four F0 estimates and their saliences in each

frame. For the i:th F0 estimate xit in frame t, i ∈ [1, 4], the salience

value sit roughly expresses the strength of xit. The F0 values are ex-

pressed as unrounded MIDI note numbers by 69+12 log
2
(F0/440).

The salience values are normalized to zero mean and unit variance

over the training data.

2.2. Accent Signal for Note Onsets

The accent signal at measures the degree of phenomenal accent in

frame t based on incoming spectral energy, and in practice indicates

potential note onsets. The accent estimation method proposed in [6]

is used in a manner similar to [3]. The accent values are normalized

to zero mean and unit variance over the training data.

3. UPPER F0 LIMIT ESTIMATION

The upper F0 limit estimation aims at setting the maximum F0 for

possible output MIDI notes in each frame. This reduces both the

interference of higher notes from other instruments and the compu-

tational load due to a smaller search space.

The upper limit is estimated by calculating salience-weighted

mean of F0s in frame t, y(t) = (
P

i
xitsit)/(

P
i
sit), where sa-

lience values sit are used before normalization. The function y(t)
is smoothed to obtain ỹ(t), t > 0 using attack-release averaging by

Eqs. (1)-(3) after initializing ỹ(0) = 59.

τ =

j
τa , if y(t) > ỹ(t− 1)
τr , otherwise

, (1)

g = exp(−1/(τfr)), (2)

ỹ(t) = (1− g)y(t) + gỹ(t− 1), (3)

where fr is the frame rate. The time-constants τa = 0.14 s and

τr = 2.3 s control attack and release of the averaging, respectively.

We obtain the upper F0 limit by �ỹ(t)− c�, where �·� is the ceiling

function and c is a constant offset. We found c = 4 to perform best

in simulations.

4. NOTE AND REST MODELING

Bass notes are modeled with a 3-state left-to-right HMM in a man-

ner similar to [3]. The note HMM state q�, � ∈ [1, 3], represents the

typical values of the features in the �:th temporal segment of note

events. One note HMM is allocated for each MIDI note. The obser-

vation vector on,t is defined for a note HMM with nominal pitch n
in frame t as

on,t = [Δxn,t, sjt, at]
T , (4)

where Δxn,t = xjt − n is the difference between the measured F0

estimate xjt and the nominal pitch n of the modeled note. Index j is

obtained using Eqs. (5)-(6).

m = arg max
i
{sit} , (5)

j =

j
m , if |xmt − n| ≤ 1
arg mini {|xit − n|} , otherwise.

(6)

For a note model n, the maximum-salience F0 estimate and its sa-

lience value are associated with the note if the absolute F0 difference

is less or equal to one semitone, otherwise the nearest F0 estimate

and its salience are used. An observation vector thus consists of the

F0 difference Δxn,t, its corresponding salience value sjt, and the

accent signal value at.

The note model is trained as follows. For the time region of

a reference note with nominal pitch n, the observation vectors by

Eq. (4) constitute a training sequence. The observation sequence

is accepted for the training only if the median of the absolute F0

differences |Δxn,t| during the note is less than one semitone. The

note HMM parameters are then obtained using the Baum-Welch al-

gorithm, where the observation likelihood distributions are modeled

with four-component GMMs.

The rest segments, i.e., the time segments where no bass notes

are sounding, are modeled by a four-component GMM (analogous

to a 1-state HMM). The observation vector for rest is the maximum

salience in each frame or,t = maxi{sit}.

5. MUSICOLOGICAL MODELING

The musicological model controls transition probabilities between

the note models and the rest model. The musicological modeling

is based on the fact that some notes are more probable than others

given a musical key and the preceding notes. Therefore, we need a

key estimator and a model for bass note sequences to give transition

probabilities. If the musicological model is disabled, we use uniform

transition probabilities.

5.1. Key Estimation for Bass

Key estimation aims at finding the relative-key pair, e.g., C major

/ A minor, from the F0 estimates. Let k ∈ {0, 1, . . . , 11} denote

the relative-key pairs C major / A minor, D� major / B� minor, and

so forth until pair B major / G� minor, respectively. Given the F0

estimates xit and the key profiles Pmaj and Pmin (see Fig. 2), the most

probable relative-key pair eK(t), t > 0 is calculated as follows:

d(x, k) = mod(〈x〉 − k, 12) (7)

K(k, t) = K(k, t− 1) +
X

i

»

log Pmaj(d(xit, k))

+ log Pmin(d(xit, k + 9))

–

(8)

eK(t) = arg max
k
{K(k, t)} (9)

Equation (7) gives the distance of an F0 estimate to the tonic note

of the key k, where mod(·, ·) is the integer modulo operator and 〈·〉
is the nearest integer function. By initializing K(k, t = 0) with a

uniform distribution over k, Eq. (8) then recursively calculates the

likelihood for each key based on the F0 estimates xit and the key

profiles Pmaj(d) and Pmin(d). The profiles define the likelihoods for

distance d ∈ {0, 1, . . . , 11} in major and minor keys, respectively.

When calculating distances in minor keys, term +9 in Eq. (8) shifts

the key index k to the relative minor key. Equation (9) gives the most

likely key eK(t) in frame t.
For melody transcription [3], we successfully used the key pro-

files reported by Krumhansl in [7, p. 67]. For bass notes, however,

we discovered that using artificial profiles consisting of only tonic,

perfect fourth, and perfect fifth performed better. We refer to these

as I-IV-V profiles. Bass lines usually contain lots of these notes with
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Fig. 2. The Krumhansl and the proposed I-IV-V key profiles.

respect to the key, and therefore lead to a better performing model.

The Krumhansl and the I-IV-V profiles are illustrated in Fig. 2. The

key estimation results for both profiles are reported in Sect. 7.

5.2. Modeling Bass Note Sequences

The bass lines usually contain a great deal of repetitions and note

patterns which are conventionally used in bass playing. Therefore, it

should be beneficial to use a predictor to give a probability for mov-

ing to a note given the preceding notes. For this purpose, we have

successfully used a note bigram (i.e., only the preceding note affects

the probability) in melody transcription [3]. Due to a more repetitive

nature of bass lines, however, a better predictor would utilize sev-

eral preceding notes. One possible solution is to use a note N -gram

which requires a lot of memory for large N . A better solution is to

use a VMM for which the context length N (limited by a predefined

maximum context length Nmax) varies in response to the available

statistics in the training data. This is a very desirable feature, and for

note sequences, this means that both short and long note sequences

can be modeled based on their occurrence in the training data within

a single model. Begleiter et al. published an article on prediction

with VMMs and provided a toolbox of algorithms for VMM train-

ing and prediction [8]. In our simulations, we use the prediction by

partial matching (PPM) algorithm from the toolbox.

We train a note bigram and a VMM by using a collection of

over 1300 MIDI files including bass lines. For each file, we esti-

mate a relative-key pair using the Krumhansl profiles and all MIDI

notes from the file. Based on the estimate, the bass notes are shifted

both up and down to C major to obtain two note sequences one

octave apart from each other. A rest is added between two con-

secutive notes if they are separated by more than 200 ms. We ob-

tain a key-normalized predictor by training with these bass-note se-

quences. While calculating the transition probabilities during tran-

scription, the key estimate of Eq. (9) is used to match the notes with

the key-normalized predictor.

6. VITERBI DECODING AND POST-PROCESSING

The note models and the rest model constitute a network where the

transitions probabilities between the models are given by the musi-

cological model. Viterbi decoding finds a path through the models

and produces a sequence of notes and rests as the transcription of the

bass line. The entire method operates faster than real-time on a PC

with a 1.7 GHz Pentium 4 processor. Figure 3 shows an example

transcription.

6.1. Blockwise Backtracking for Streaming Audio

Conventionally, Viterbi decoding decides the best path by backtrack-

ing from the last frame of the song. We noticed that after some

frames, however, the best path remains unchanged and it is possible
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Fig. 3. An excerpt from song RWC-MDB-P-2001 No. 61 showing

the reference notes, F0 estimates (salience indicated by intensity)

and accent, the estimated upper F0 limit, the notes of estimated key

G major / E minor, and the transcription.

to fix the the path (and the transcription) before processing the entire

song. This enables causal transcription of streaming audio.

The backtracking is performed blockwise as follows: given the

block size b, process frames (t − b, t] and update the key estimate
eK(t) and the note transition probabilities accordingly. Then back-

track through frames (t−2b, t] and fix the path in frames (t−2b, t−
b]. Then replace t with t+b and continue. In other words, backtrack-

ing is performed in 50% overlapping blocks of 2b frames where the

best path is fixed for the first b frames. In the simulations, a block

size of half a second (b = 23) was sufficient to produce similar re-

sults as the conventional backtracking.

6.2. Post-processing with a Retrained VMM

An optional post-processing step trains a VMM from the individual

transcribed sequence of notes and rests, and uses it to give the transi-

tion probabilities during the second Viterbi decoding pass. This aims

at adapting to the song by capturing the possible bass-note patterns

present in the first transcription. The key estimation is not needed

during the second pass since the trained VMM includes the key in-

formation in the actual note patterns.

7. RESULTS

The method was evaluated using three-fold cross-validation on the

87 songs in the database. We used the recall rate R and the precision

rate P defined by

R =
#(correctly trans. notes)

#(reference notes)
, P =

#(correctly trans. notes)

#(transcribed notes)
(10)
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Table 1. Transcription results using the standard Viterbi (%).

Method R P F

No musicological model:

Acoustic models 56.5 49.2 50.8

Upper F0 limit estimation 60.7 58.2 57.4

Musicological modeling:

Bigram note transitions 63.1 58.5 58.8

VMM note transitions 64.0 59.7 59.9

VMM post-processing 62.8 61.3 60.2

Table 2. Transcription results using blockwise backtracking and

changing key estimates (%).

Method R P F

Bigram note transitions 63.1 58.6 58.8

VMM note transitions 63.8 59.6 59.8

as performance criteria. A reference note is correctly transcribed by

a note in the transcription if their MIDI note numbers are equal, the

absolute difference between their onset times is less than 150 ms, and

the transcribed note is not already associated with another reference

note. We used the F-measure F = 2RP/(R + P ) to give an overall

measure of performance. The recall rate, the precision rate, and the

F-measure were calculated separately for the transcriptions of each

recording, and the average over all the transcriptions is reported for

each criterion.

7.1. Transcription Results

Table 1 summarizes the transcription results for different simulation

setups when using the standard Viterbi decoding, where the back-

tracking starts from the last frame tmax and the key estimate eK(tmax)
is used throughout the transcription. When using only the acoustic

models, the results are not very good due to disabling the musico-

logical model. The upper F0 limit estimation greatly improves the

results. The musicological model further improves results where the

VMM for transition probabilities works better than the note bigram.

For the VMM, the best performing maximum context length Nmax

was five preceding notes. The post-processing is simulated for the

best performing method (VMM note transitions), and it slightly im-

proves the results. For the post-processing VMM, the best maxi-

mum context length was Nmax = 8. The most common errors in-

clude octave errors, missing note onsets, and confusions with other

instruments. For all setups, the average temporal overlap between

transcribed and reference notes was 62%.

Table 2 shows the results when using the blockwise backtrack-

ing. The acoustic models both with and without the upper F0 limit

estimation give exactly the same results as the standard Viterbi. The

causal backtracking seems to work equally well with the standard

Viterbi decoding although the key estimate and the note transition

probabilities may change between each block of frames.

7.2. Key Estimation Results

We measure the performance of the key estimation method by com-

paring the estimated keys to the manually annotated reference keys

in the database. The evaluation criterion is the key signature distance

on the circle of fifths between the reference key and the estimated

Table 3. Key estimation results.

Key signature distance 0 1 2 ≥ 3

Krumhansl profiles, eK(tmax) 57.2 34.7 2.0 6.1

I-IV-V profiles, eK(tmax) 80.4 9.8 3.2 6.6

Krumhansl profiles, eK(t) 49.4 36.3 3.8 10.6

I-IV-V profiles, eK(t) 69.7 16.9 4.8 8.6

relative-key pair. Table 3 shows the key estimation results. The per-

cents indicate the time spent in estimated keys over the database. The

first two rows show the results with the last key estimate eK(tmax)
used with the standard Viterbi. The lower two rows show the results

for blockwise updated key used in the causal method. In both cases,

the proposed I-IV-V profiles estimate the correct key more often than

the Krumhansl profiles. The blockwise updated key expectedly per-

forms worse than using eK(tmax) which gathers evidence regarding

the key over the entire song.

8. CONCLUSIONS

We have described a method for transcribing the bass line in poly-

phonic music. The method successfully employed VMMs in model-

ing bass note sequences. In addition, the method was shown to work

also as a causal version, thus enabling the transcription of streaming

audio. The method was evaluated using 87 minutes of polyphonic

popular music and achieved good results. Audio demonstrations are

available at

http://www.cs.tut.fi/sgn/arg/matti/demos/basstrans.
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