
FAST RECOGNITION OF REMIXED MUSIC AUDIO

Michael Casey∗

Goldsmiths, University of London
Department of Computing
New Cross, London, UK

Malcolm Slaney

Yahoo! Research, Inc.
Sunnyvale

California, USA

ABSTRACT

We present an efficient algorithm for automatically detecting
remixes of pop songs in large commercial collections. Remixes
are closely related as commercial products but they are not closely
related in their audio spectral content because of the nature of the
remixing process. Therefore spectral modelling approaches to audio
similarity fail to recognize them. We propose a new approach– that
chops songs into small chunks called audio shingles– to recognize
remixed songs. We model the distribution of pair-wise distances be-
tween shingles by two independent processes– one corresponding to
remix content and the other correspoding to non-remix content in a
database. A nearest neighbour algorithm groups songs if they share
shingles drawn from the remix process. Our results show 1) log-
chromagram shingles separate remixed from non-remixed content
with 75%-75% precision-recall performance, cepstral coefficient fea-
tures do not separate the two distributions adequately 2) increasing
the observations from the remix distribution increases the separabil-
ity. Efficient implementation follows from the separability of the
distributions using locality sensitive hashing (LSH) which speeds up
automatic grouping of remixes by between one to two orders of mag-
nitude in a 2018-song test set.

Index Terms— Music, Statistics, LSH, Shingles, Databases

1. INTRODUCTION

Today’s large commercial music collections contain millions of songs
and their associated metadata. One of the major challanges for man-
aging such collections is identifying and eliminating ’duplicate’ en-
tries, that is, catalogue items that are closely related from the users’
perspective. In a commercial catalogue, songs may be considered
closely related even if their spectral content is not similar for the
most part. This is the case with remixes– a vocal sample is taken
from a source recording and summed into a completely new musi-
cal work created by a producer or DJ. Even though the new song is
almost entirely composed of different material from the source, the
two songs are presented as different instances of the same title to the
user. For example, the Madonna track Nothing Fails has 10 differ-
ent versions including the remixes Nevins Mix, Jackie’s In Love In
The Club Mix, Nevins Dub Mix, Tracy Young’s Mix, Big Room Rock
Mix, Classic House Mix and a Radio Remix. User navigation of such
catalogues can become weighed down with these duplicate entries
thus impacting browsing efficiency, obscuring the users query and
reducing sales.

The problem is closely related to that of near-duplicate text doc-
uments found on the World Wide Web. Search engine technology

∗This research supported by Engineering and Physical Sciences Research
Council Grant GR/1xxx/X.

has been developed to eliminate near-duplicate or derivative items
from internet searches using the technique of shingling [2]. In previ-
ous work we demonstrated the use of audio shingles on a derivative
work (remix) retrieval task and we demonstrated that an efficient al-
gorithm based on locality sensitive hashing (LSH) could efficiently
identify them in a collection of 2000 songs, [4].

Our new contributions in this paper are 1) a remix recognition
algorithm 2) a statistical analysis of the properties of remixes in au-
dio feature space 3) experimental evidence that the remix problem,
as stated, is well-posed 4) details of efficient implementation using
locality sensitive hashing.

The structure of the paper is as follows: we review different
approaches to audio similarity in Section 2, we develop a model
for remix processes using distributions of Euclidean distances be-
tween audio shingles in Section 3, we then given details of remix
recognition algorithms in Section 4 and we present the results of
remix recognition experiments on a 2000 song data set in Section 5.
We conclude with the implications of our results for efficient audio
matching applications in Section 6.

2. PREVIOUS WORK

There is a wide spectrum of previous work covering a range of music-
similarity tasks: from very specific fingerprinting work [10][23] to
genre recognition [25][15]. This work falls in the middle. We want
to find songs that are similar, but not exactly like another song. Our
tasks needs both new features–we don’t expect the very specific fea-
tures used in fingerprinting to work–and a new matching criteria be-
cause we expect that remixes will have segments rearranged and new
material inserted.

Our similarity definition means that our work is different from
the work that has been done on audio fingerprinting [20][21][22][23].
With fingerprinting users want to find the name of a recording given
a sample of the audio. The secret sauce that makes fingerprinting
work is based on defining robust features of the signal that lend the
song its distinctive character, and are not harmed by difficult com-
munications channels (i.e. a noisy bar or a cell phone). These sys-
tems assume that some portion of the audio is an exact match—this
is necessary so they can reduce the search space. We do not expect
to see exact matches in remixes.

At the other end of the specificity scale, genre-recognition [25],
global song similarity [15], artist recognition [5], musical key iden-
tification [14], and speaker identification [16] use much more gen-
eral models such as probability densities of acoustic features ap-
proximated by Gaussian Mixture Models. These so-called bag-of-
feature models ignore the temporal ordering inherent in the signal
and, therefore, are not able to identify specific content within a mu-
sical work such as a given melody or section of a song.

IV 14251424407281/07/$20.00 ©2007 IEEE ICASSP 2007

2.1. Matching with Locality Sensitive Hashing

Our audio work is based on an important web algorithm known
as shingles and a randomized algorithm known as locality-sensitive
hashing (LSH) [2]. Shingles are a popular way to detect duplicate
web pages and to look for copies of images. Shingles are one way to
determine if a new web page discovered by a web crawl is already in
the database. Text shingles use a feature vector consisting of word
histograms to represent different portions of a document. Shingling’s
efficiency at solving the duplicate problem is due to an algorithm
known as a locality-sensitive hash (LSH). In a normal hash, one set
of bits (e.g. a string) is transformed into another. A normal hash is
designed so that input strings that are close together are mapped to
very different locations in the output space. This allows the string-
matching problem to be greatly sped up because it’s rare that two
strings will have the same hash.

Our previous work we showed that matched filters, and there-
fore Euclidean distance, using chromagram and cepstral features
performs well for measuring the similarity of passages within songs
[3][4]. The current work applies these methods to a new problem,
grouping of derived works and source works in a large commercial
database using an efficient implementation based on LSH.

3. MODELING REMIXES

3.1. The Dataset

The data consist of 2018 songs chosen to be the complete catalogues
of two artists (Miles Davis and Madonna) drawn from the Yahoo!
Music Universal database. In this paper we focus on remixes in the
set of Madonna songs, we use the Miles Davis songs as an extended
database to test robustness against different artists’ music data. The
full catalogue of Madonna songs has a higher proportion of remix
works than works with no remix versions.

3.2. Features

The remix songs share a small aspect of their content, usually a
prominant vocal sample. The sample is specific, so we seek the spe-
cific audio content shared between songs. However, the difference in
context can be significant– comprising different sets of instruments
(bass, keyboards, drums, etc.) and different rhythmic / melodic com-
ponents between remixed shingles. So we seek features that are ro-
bust to the change in context. To this end we choose a pitch-based
feature (PCP) so that the specific pitch-sequence content used in a
remix is represented.

3.3. Additive Noise / Silence Removal

We assume a volume process applied to a song with additive noise.
We do not want silence or noise to be included in the matches be-
tween songs since these two processes are generic to all songs and
would corrupt the recognition of similar content. We removed si-
lence by thresholding audio segments by the geometric mean of the
shingles’ power in each song. Whilst this may seem an aggressive
threshold, it is also reasonable to assume that remix content will be
prominant aspects of the song.

3.4. Audio Features

We extracted Log-Frequency Cepstral Coefficients (LFCC) and pitch-
class profiles (PCP) as follows: features were extracted from uncom-
pressed audio sourced from the Yahoo! Music database. All files

were 44.1kHz stereo, mixed to mono, 16384-point hamming win-
dowed with 4410-sample hop and a 16384-pt DFT computed using
the FFT. The window size was chosen such that two frequency sam-
ples were available from the DFT for the lowest pitch class C0 =
65.4Hz. The band edges were chosen at the mid point (quatertone)
between chromatic pitch classes with the low edge set to 63.5Hz
and high edge of 7246.3Hz, a quatertone above A7.

The 8193 DFT magnitudes were assigned to pitch class bands
with samples near the band edges shared proportionally between the
bands [1]. The remaining DFT coefficients were disposed. The
pitch-class assignments were then folded into a single octave by
summing over all octaves for each pitch class, and the logs of the val-
ues were taken yielding the 12-dimensional pitch-class-profile (PCP)
vector every 100ms.

The LFCC features used the same constant-Q transform as the
PCP, then the log of the values was taken and the result transformed
to cepstral coefficients using the DCT yielding 20 coefficients per
100ms. We note that this feature is a slightly modified form of the
widely used MFCC feature.

3.5. Audio Shingles

Audio shingles concatenate feature vectors into high-dimensional
vectors. Informed by previous studies [4][13] we used window of 4s
with a hop of 0.1s yielding 10Hz × 20d × 4s = 800−dimensions
for LFCC and 10Hz × 12d× 4s = 480− dimensions for PCP.

4. RECOGNIZING REMIXES

We first propose remix recognition as a test between two songs; so to
identify all remixes in a database, all pairs of songs must be tested.
We later show how to recognize remixes without exhaustive selec-
tion from the database with full control over potential loss of accu-
racy.

Let A,B ∈ {S} denote two songs drawn randomly from a
database and xi ∈ A, yj ∈ B be shingles drawn from the songs.
We then define the remix distance:

δremix(A,B) =
X

N

N

min
i,j

X

k

|xi
k − yjk|2,

this is the sum of the N minima of the pair-wise shingle dis-
tances between the songs. These are obtained by sorting the dis-
tances in acending order and summing the first N values. The com-
plexity of this classifier, as stated, isO(n2 + log(n)) in the number
of shingles in the database. However, the sort can be computed effi-
ciently, as can the pair-wise distance computations.

To classify, define a scalar threshold, r0, on the remix distance
and perform the test δremix(A,B) < r0. If the remix distance falls
below the threshold we label the song-pair as a remix.

4.1. Justification of the threshold approach

The parameter r0 is critical in our method, and seems at first over
simplistic. To justify its use we conducted an experiment chord root
recognition on varied synthetic complex-tone audio data. The data
consisted of 120 chords for 12 pitch-chroma class. We synthesized
audio using Matlab by additive synthesis with randomly varying har-
monics, formant frequencies, note octaves (7-octave range) and note
intensities. Chord inversions were used so the root randomly varied
in the voicing. Between two and six notes were used chosen from the
major and minor triads for each pitch class. Classifiers were trained

IV 1426

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.01

0.02

0.03

0.04

0.05

0.06
Distribution of Σ(10 NN dists) in Remix/Non Remix Songs

distance2

Li
ke

lih
oo

d
P

(ω
k)

Remix

Non Remix

r
0

Gaussian Mixture Model

Fig. 1. Distribution of remix and non-remix between-song shin-
gle distances and GMM fit to remix distribution (only) showing the
choice of threshold as a likelihood ratio of two classes (True Posi-
tives and False Positives) in the target remix distribution. The False
Positives are clearly drawn from the non-remix distribution.

on a subset of 70% of each class, with 30% held back for testing. All
classifiers were trained and tested on the same random permutation
per 10-fold cross-validation.

Classifiers were 1) 12-way support vector machine classifiers
with a linear kernel (SVM-Lin) 2) polynomial kernel (SVM-Pol) and
3) k-NN classifier, with k = 12, consisting of the mean vector of the
training data frames for each pitch class.

Table 1. Performance of kernel-feature-classifier combinations in a
chord-root classification experiment

Classifier linear PCP log PCP LFCC

SVM-Lin 75.2 99.9 23.74
SVM-Pol 98.2 99.8 45.81
k-NN 77.1 98.5 21.33

We infer from Table 1 the following: 1) PCP with logarithmic
kernel increases seperability of similar harmony content in the pres-
ence of acoustic variation 2) the increase is due to the existence of
threshold discriminant in the kernel space 3) the k-NN classifier per-
forms as well as the SVM-Lin classifier using PCP with logarithmic
kernel also reenforcing the existence of a discriminating threshold.
This intermediate result motivates our choice of feature and choice
of threshold classifier for identifying similar shingle content between
remixes.

4.2. Estimation of the threshold

To estimate the threshold we chose N = 10 and fit the remix distri-
bution of shingle distances with a mixture of two Gaussians. Figure
1 shows the distributions of δremix shown above over the Madonna
songs divided by ground truth into remix and non-remix classes for
N = 10. The figure shows a fit of the remix distribution with a
mixture of two gaussians. The remix distribution can be seen to
be composed of true positive (TP) remix shingles and false positive

(FP) shingles that are actually drawn from the non-remix distribu-
tion. We choose the threshold r0 using the likelihood ratio test for
the two gaussians fit to the remix distribution. Assuming the data are
independent and identically distributed (i.i.d.):

P (x1, x2, . . . , xN |μ1, σ1)
P (x1, x2, . . . , xN |μ2, σ2) =

e− |Pk xk−Nμ1|2
σ21

e− |Pk xk−Nμ2|2
σ22

>= λ0

in the GMM example in Figure 1 λ0 = 1. Note that the vari-

ance of order distributions go as
σ2k
N
. So increasing N reduces the

variance and, therefore, also the degree of overlap in the two dis-
tributions. The reduced overlap results in increased classifier per-
formance because we reduce the sampling error with more sam-
ples from each song pair. However, the proportion of remix shin-
gles between remixed songs is small compared to the proportion of
non-remixed shingles. This is because remix songs are often based
around a small fragment, or a number of such fragments. If we
chooseN too large we exhaust the supply of available remixed frag-
ments and we start to draw from the class of non-remixed shingles
within the remixed song.

4.3. Locality Sensitive Hashing

Using the threshold r0 as a search radius we used the E
2LSH al-

gorithm to hash the shingles and retrieve only those below threshold
[7][9][8]. Use of the LSH algorithm removes explicit computation
of the between-shingle distances as it is implicitly estimated by LSH
hash. Those shingles whose distances are within r0 of eachother will
fall in the same hash bucket with probability 1− ε. The trade-off in
the algorithm is between the speed and accuracy and is controlled by
the 1− ε term.

We modify the steps in the remix recognition algorithm to use
LSH in the following way. Instead of computing δremix(A,B) we
hash the shingles (xi, yj) by projecting against a fixed random basis
VN(0, 1). Each projection hashes the shingle to the real line which
is chopped into equal-length segments. The size of the hash buckets
is determined by the radius parameter r0. Collisions are chained
with probability 1 − ε of shingles within a distance r0 of eachother
falling in the same bucket for each vector v ∈ V. Because this hash
table is so large, consisting of the entire range of distances within the
dataset, a secondary hash table is constructed that chains the sparsely
populated primary hashes.

To efficiently retrieve all the shingles within the database that
fall within r0 of eachother, we simply note which hash buckets con-
tain collisions. The proportion of the database that caused collisions
is very small compared to the size of the database, so we collect the
indexes of those points and perform the Euclidean distance calcula-
tion.

This exact distance calculation is thresholded using r0 and the
points remaining are associated with their corresponding songs. Now,
for each song, if there are close to N = 10 shingle indexes remain-
ing we say that there is a remix in the database, and we simply locate
the other songs by inspecting the indexes of the collided shingles.

The speedup factor for LSH over the pair-wise shingle distance
computation is between a factor of 10 and 100 using the current im-
plementation this algorithm.

5. RESULTS

The results of our remix retrieval experiment are shown in Figure 2.
The dashed line on the figure shows performance for the exact algo-

IV 1427

rithm with distance threshold set to r0 = 0.2. The remaining lines
show the performance of the approximate (LSH) algorithm using
thresholds r0 = 0.04, 0.1, 0.14, 0.16, 0.18, 0.2 to show the affect
on performance as we approach the optimal decision boundary. The
LSH algorithm performs extremely accurately for a speedup fac-
tor of between one and two orders of magnitude when the thresh-
old is set near the optimal. This highlights the importance of using
a threshold estimation method as outlined above on some example
data before choosing the LSH hash bucket sizes.

In our experiments performance was impacted with about 10%
increased error when we introduce a large amount of material from
another artist. In this case the interference is 1712Miles Davis tracks
that are highly unlikely to overlap with the TP remix shingle pairs
for Madonna songs. This decrease in performance is caused by sim-
ilar features, so we conclude that the log-PCP feature might be im-
proved.

Fig. 2. Results of remix retrieval on 306 madonna songs using exact
and approximate (LSH) algorithms. (Figure reproduced from [4]

6. CONCLUSIONS

We have shown that a a similarity measure between songs using only
small parts of the song can be used effectively to identify songs that
are related as remixes. We used the distributions of inter-song shin-
gle distances and showed that separation of the two distributions can
be achieved by choosing a suitable threshold on the distances and
that this threshold could be estimated from examples using a mix-
ture of Gaussians. With a suitable kernel space we showed that a
threshold classifier can be used for robust audio matching for mid-
specificity problems such as remix recognition.

We gave the details of two algorithms, one based on exact com-
putation of between-song shingle distances and the other based on
approximate evaluation using LSH. The results of experiments on
a collection of 306 within-artist examples showed that the approxi-
mate algorithm performed very well with respect to the exact algo-
rithm for a speedup factor of between 10 and 100.

In future work we hope to use more robust features to see if the
degree of separation between distributions can be improved, this will
lead to increased performance and a greater degree of generalisation
of our results.

7. REFERENCES

[1] Mark A. Bartsch and Gregory H. Wakefield. To Catch a Cho-
rus: Using Chroma-Based Representations for Audio Thumb-
nailing. in Proc. WASPAA, 2001.

[2] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig.
Syntactic clustering of the web. In Proceedings of WWW6 ’97,
pages 391–404, Elsevier Science, April 1997.

[3] M. Casey and M. Slaney. The improtance of sequences in mu-
sic similarity. in Proc. ICASSP, 2006.
in Proc. ISMIR, 2006.

[4] M. Casey and M. Slaney. Song Intersection by Approximate
Nearest Neighbor Search. in Proc. ISMIR, 2006.

[5] D. Ellis, B. Whitman, A. Berenzweig, S. Lawrence. The Quest
for Ground Truth in Musical Artist Similarity. Proc. ISMIR-02,
pp. 170–177, Paris, October 2002.

[6] M. Datar, P. Indyk, N. Immorlica and V. Mirrokni. Locality-
Sensitive Hashing Scheme Based on p-Stable Distributions, In
Proceedings of the Symposium on Computational Geometry,
2004

[7] Locality-sensitive hashing using stable distributions, in Near-
est Neighbor Methods in Learning and Vision: Theory and
Practice , by T. Darrell and P. Indyk and G. Shakhnarovich
(eds.), MIT Press, to appear.

[8] Aristides Gionis, Piotr Indyk and Rajeev Motwani. Similarity
Search in High Dimensions via Hashing. The VLDB Journal,
pp. 518–529, 1999.

[9] J. Herre, E. Allamanche, O. Hellmuth, T. Kastner. Robust
identification/fingerprinting of audio signals using spectral flat-
ness features. Journal of the Acoustical Society of America,
Volume 111, Issue 5, pp. 2417–2417, 2002.

[10] Meinard Muller, Frank Kurth and Michael Clausen. Audio
Matching via Chroma-Based Statistical Features. In Proc. IS-
MIR, London, Sept. 2005

[11] S. Pauws. Musical Key Extraction from Audio. In Proc.ISMIR,
Barcelona, 2004.

[12] Elias Pampalk, Arthur Flexer, Gerhard Widmer. Improvements
of Audio-Based Music Similarity and Genre Classificaton. in
Proc. ISMIR, pp. 628-633, 2005.

[13] Douglas A. Reynolds. Speaker identification and verification
using Gaussian mimxture speaker models. Speech Commun.,
17 (1–2):91–108, 1995.

[14] Matthew Miller, Manuel Rodriguez and Ingemar Cox. Au-
dio Fingerprinting: Nearest Neighbour Search in High Di-
mensional Binary Spaces. Multimedia Signal Processing, 2002
IEEE Workshop on , 2002

[15] Jaap Haitsma, Ton Kalker. A Highly Robust Audio Finger-
printing System, Proc. ISMIR, Paris, 2002.

[16] P. Cano and E. Batlle and T. Kalker and J. Haitsma, A review of
algorithms for audio fingerprinting. In International Workshop
on Multimedia Signal Processing, US Virgin Islands, Decem-
ber 2002.

[17] Avery Li-Chun Wang, Julius O. Smith, III. System and meth-
ods for recognizing sound and music signals in high noise and
distortion. United States Patent 6990453, 2006

[18] G. Tzanetakis and P. Cook. Musical genre classification of au-
dio signals. IEEE Transactions on Speech and Audio Process-
ing, 10(5):293–302, 2002.

IV 1428

