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ABSTRACT

Signal similarity search is an important technique for music infor-
mation retrieval. A basic task is nding identical signal segments on
unlabeled music-signal archives, given a short music signal fragment
as a query. In such a task, the search must be fast and suf ciently
robust against possible signal uctuations due to noise and distor-
tions. In this special session paper, we describe a search method
designed to cope with additive interferring sounds by spectral parti-
tioning. Then, we introduce another method designed to be robust
under multiplicative noise or distortion based on binary area repre-
sentation.

Index Terms— search methods, information retrieval, music,
multimedia databases

1. INTRODUCTION

The approaches to music information retrieval based on similarity
search can be divided into two groups according to the objective.
One group aims at retrieving music similar to a query in some musi-
cal way, such as the same melody or a rearrangement of the music.
The other aims at retrieving segments almost the same as the query
(i.e., reference signal) by signal-level comparison with the database
(i.e., stored signal). The latter is often referred to as signal similarity
search or audio ngerprint identi cation.

Until around the mid 1990s, signal similarity search had not re-
ceived much attention from researchers in the audio signal process-
ing eld; most of work focused on automatic music transcription and
music audio description. However, recent advances in audio coding
technology and storage device technology, together with widespread
broadband Internet accessibility, has highlighted the need for search-
ing music via audio signal queries.

Signal similarity search can be simply accomplished by calcu-
lating the similarity between the reference signal and each section of
the stored signal. The audio signal similarity can be calculated by
extracting audio feature vectors from a signal and comparing them.
For example, various features, such as zero-crossing rates, power
spectra, and mel-frequency cepstrum coef cients, can be used.

However, the search requires many feature comparisons; there-
fore, an exhaustive (brute-force) algorithm is usually impractical.
Thus, search acceleration or scalability extension has been a major
research issue. In this regard, in the late 1990s, Kashino et al. pro-
posed a method called time-series active search (TAS) [1, 2]. TAS
accelerates the search, while guaranteeing exactly the same search
results as brute-force search, by exploiting mathematical property
of histograms of audio features. TAS has been extended to even
faster algorithms by introducing piecewise dynamic segmentation

(PDS) of the feature sequence [3]. While TAS reduces the number of
matching calculations, PDS reduces the computational cost required
for one matching calculation. This reduction is achieved by project-
ing a section of the feature sequence to a lower-dimensional space
and performing matching in the projected space. Hash functions are
also commonly used to accelerate the search.

Another important research issue is robustness against noise and
distortion. In audio ngerprinting applications, the query and stored
signals cannot be assumed to be exactly the same even in the corre-
sponding sections of the same sound; for example, the query signal
may be compressed, transmitted over mobile phones, or mixed with
various irrelevant sounds. For robust search, Haitsma et al. pro-
posed a system [4] that employs binary representation of the sound
spectrum, and accelerates the search using the hash technique. Wang
developed a feature-point-based approach to increase the robustness
and speed [5].

The above-mentioned methods and other ngerprinting methods
have been introduced in real applications. The applications include
broadcast monitoring for commercial messages and music, music
information retrieval by audio queries via mobile phones, and copy-
right checking for music and video. However, we consider that ap-
plications of signal similarity search will not be limited to existing
ones. As many Internet search sites are primarily based on text simi-
larity search, we expect that signal similarity search will also become
important for music and multimedia.

With this in mind, this paper focuses on robust methods for sig-
nal similarity search. Section 2 overviews a search method designed
to be robust against additive noise. Section 3 describes a method
that can cope with severe multiplicative distortion. Finally, section 4
concludes the paper.

2. THE DIVIDE AND LOCATE METHOD

The existing work on audio ngerprinting often assumes that the tar-
get sound is loud enough in comparison with interfering sounds.
However, this is not always the case. For example, in broadcast-
ing programs, musical pieces may be used as the background for
narrations and conversations. We refer to the task of detecting and
identifying the backgroundmusic as backgroundmusic (BGM) iden-
ti cation [Fig. 1].

Our approach to BGM identi cation is to divide a spectrogram
into a number of small regions and performing matching for each
region to locate in the database, which we call the divide and locate
method (DAL). The idea of spectral decomposition was presented
in the self-optimized spectral correlation method (SSC) [6]. How-
ever, spectral decomposition usually results in an increase of com-
putational cost. A computationally simpler method has been also re-
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Fig. 1. Basic BGM identi cation task.

ported [7], but the search is still slower than that of the conventional
TAS. The DAL method we discuss here further reduces computa-
tional cost in comparison with the above-mentioned methods. The
basic idea is to apply vector quantization (VQ) to each decomposed
component and then to search for similar components by looking up
a similarity table among the VQ codes.

2.1. Method

First, time-frequency power spectra are extracted for the stored sig-
nal. Each spectrum is then decomposed into a number of small time-
frequency components of a uniform size and normalized by its av-
erage power, as in Fig. 2(a), where Gt,wm denotes the component
at time t and the frequency band wm of the stored signal. Next, the
spectrum corresponding to each component is classi ed by VQ. A
VQ codebook is prepared for each frequency band using the LBG
algorithm. Then, an index is made for the VQ codes of the stored
signal. The index is a list of positions where each VQ code appears.
We perform these processes prior to the search stage.

The main part of the processing comprises the following four
steps.

Step 1 The time-frequency spectra of a query are extracted and de-
composed into components [Fig. 2(a)], as done for the stored
signals in the preprocessing. Here, let Fti,wm be the decom-
posed component at time ti of the query, where wm is the
frequency band of Fti,wm ; TR = {t1, t2, . . .} be the en-
tire set of ti of decomposed components of the query; and
W = {w1, w2, . . .} be the entire set of frequency bands.
These decomposed components are classi ed by VQ at each
frequency band using the same VQ codebook as that used for
the stored signals.

Step 2 As shown in Fig. 2(b), components similar to Fti,wm are
detected. This is easily done using a look-up table of the sim-
ilarities between the VQ codes and the index built in the pre-
processing.

Step 3 As in Fig. 2(c), the similarities with respect to each compo-
nent detected in Step 2 are integrated, and the total similarity
S(t) for each segment on the stored signal is calculated as

S(t) =
1

|TR||W |
X

ti∈TR

X

wm∈W

sp(Fti,wm , Gt+ti,wm),(1)

where sp(Fti,wm , Gt+ti,wm) is the similarity betweenFti,wm

andGt+ti,wm . In the calculation of S(t), sp(Fti,wm , Gt+ti,wm)

is evaluated only ifGt+ti,wm is detected as a component sim-
ilar to Fti,wm in Step 2.

Step 4 Segments whose total similarities exceed a search threshold
are determined to contain the same music as the BGM of the
query.

2.2. Experiments

Here, we show that the proposed algorithm achieves practical accu-
racy under a realistic condition, assuming the broadcasting playlist
generation task.

The test signals were two 161-m audio signals: one was music
and the other was speech. The music signal was prepared by con-
necting 161 different 50-s music signals with a 10-s gap between
them. The music was chosen from the RWC Music Database (Clas-
sical Music Database and Popular Music Database) [8]. The speech
comprises a narration, conversation, and artist interview, edited so
that it does not include any blank segments longer than 1 s. Those
signals were digitized at 11.025 kHz, 8-bit accuracy. We mixed these
two signals with various SNRs, from +3 to −9 dB, on a computer.
The SNR is de ned as

10 log10(
average power of music signal
average power of speech signal

) (dB). (2)

For spectrum extraction, we used FFT of 1,024 points. In this ex-
periment, the number of components along the frequency axis was
chosen to be one. The components were extracted from the signals
every 50 ms. The VQ codebook size was 256.

The playlist was created as follows. First, a 5-s segment was
chosen every one second of the input signal, and each segment was
used as a query. This means that there were a total of 9,656 (161 ×
60−4) queries for each SNR condition. For each query, the database,
which contains 0.58 million music pieces, was searched to nd a
match. A piece is approximately 4.5 minutes in length on average.
All of the above-mentioned 161 music pieces were included in the
database. A series of continuous hits on the same music piece was
concatenated to create a playlist. The accuracy was measured in
terms of the recall rates R, when the similarity threshold for detec-
tion was set to a constant value that gives the 100 % precision rate
(no redundant detections) throughout the tests. The P and R are
de ned as

P = #(correct retrieved titles)/#(retrieved titles), (3)

R = #(retrieved target titles)/#(target titles). (4)

The target title is the title that should appear in the playlist.
Figure 3 shows the results. The recall was better than 90 %when

the SNR was above −6 dB, and was 100% when the SNR was 0 dB
and 3 dB.

3. BINARY AREA MATCHING

The DAL method assumes that the noise is additive; which is a valid
assumption in the BGM identi cation task for TV and radio pro-
grams. However, generally, there are other typical noises in audio
signals. For example, when we consider audio queries captured by
a mobile phone, the signal may suffer severe multiplicative noise or
distortion due to terminal characteristics, codec characteristics, and
environment acoustics, in addition to additive noise. For such ap-
plications, the accuracy of signal matching methods may become
insuf cient because the feature vectors or VQ codes may be altered.
A solution to this problem is to match multiple vectors or VQ codes
in parallel, as in [4]. However, we here describe another approach.
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Fig. 2. Overview of the proposed DAL search method.
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Fig. 3. Playlist accuracy with the DAL method
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Fig. 4. Example binary area extraction

3.1. Method

Our solution is a method called binary area matching (BAM). In
the BAM method, we rst perform frequency analysis and then cal-
culate the normalized power for each decomposed time-frequency
region. The power normalization is done by the partial normaliza-
tion method reported earlier [10]. Next, we introduce two threshold
values, θ0 and θ1 (θ0 ≤ θ1), and quantize the normalized power
pn(t, f) for each region at time t and frequency f . That is, the
power is quantized to 0 if pn(t, f) < θ0, and 1 if pn(t, f) > θ1.
Note that the regions where θ0 ≤ pn(f, t) ≤ θ1 are just discarded.
An example of the quantized results are shown Fig. 4. We call them
the binary area representation of signals. The matching calculation is
simply done by counting the number of cooccurrences of the quan-
tized codes at the corresponding positions in the maching window.

3.2. Experiments

We performed two experiments: one to compare the accuracy with a
conventional method (TAS)[2], and the other to check the accuracy
under a realistic setup for moblie music information retrieval.

In the rst test, the stored signals were a 20-minute original
music signal comprising 34 music pieces. For query signals, the
same signal was played by a loudspeaker in a noisy coffee shop and
captured by a mobile phone at a distance d of 0.75 meter from the
loudspeaker, as shown in Figure 5. The sound was then transmitted
through the public telephone network and recorded on a telephone.
From the recorded signal, 400 fragments were randomly chosen as
the queries. The duration of each query was 15 seconds. Both the
query and stored signals were digitized at 5.6 kHz, 8-bit accuracy.
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Fig. 5. Experimental setup for the BAM method.

Table 1. Experimental results with the BAM method (1).
method BAM (proposed) TAS (conventional)
break-even rate (P=R) 93.4% 15.9 %
Condition: a noisy coffee shop, 2G mobile phone (6.7 kbps)

The spectrogram was calculated by FFT with an analysis window of
1,024 points (samples), and the window was shifted every 100 sam-
ples. The bandwidth between 350 and 2,800 Hz was used for binary
area extraction.

The output of the test system was a list of segment locations
where the similarity exceeds a prede ned threshold value. Each de-
tected segment was determined correct if the time position error was
less than 7.5 seconds. The accuracy was evaluated in terms of preci-
sion P and recall R rates, in terms of correct or incorrect detections
and misses. As shown in Table 1, the break-even rate (P or R when
the threshold was chosen so that P = R) is considerably improved
in comparison with the TAS method.

In the second test, the stored signals were 0.23 million music
pieces. A piece is approximately 4.5 minutes in length on aver-
age. For this experiment, a system was built to receive telephone
calls from mobile phones and record queries. It then searched the
database. If the system found a music piece that includes a segment
whose similarity value exceeds a prede ned threshold, then the piece
was returned as a search result. Thus, the result may include multiple
music pieces. If the search result included the correct title, then the
trial was counted as correct. If the system did not nd any segments
above the similarity threshold, the trial was counted as incorrect. The
accuracy was evaluated by the correct hit rate, Rh, de ned as

Rh = #(correct hit trials)/#(trials) (5)

The query audio segments were all 15-s in length and chosen
from music pieces stored in the database. Noise prerecorded at a
busy street crossing was played back at the same time from a differ-
ent speaker. The sound pressure levels of music and noise were 72
and 66 dB at 1 meter, respectively. We used 61 types of mobile phone
terminals used in Japan, and the results were averaged over those ter-
minals and the trials. The correct hit rateRh is shown in Fig. 6. The
rate was 96.7 % when d=1 [m]. The rate gradually degrades when
d increases. This is principally because most of the mobile phones
used in this experiment cancel distant sounds as a noise, and due to
this function, the number of silent queries increased for greater d.

4. CONCLUSION

We have described signal similarity search methods called DAL (divide-
and-locate) and BAM (binary area matching). DAL is based on VQ
code matching corresponding to small time-frequency signal compo-
nents, and BAM employs the binarized spectrogram with only statis-
tically signi cant regions. These two methods have been developed
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Fig. 6. Experimental results with the BAM method (2).

for different purposes: DAL for severe additive noise and BAM for
sever multiplicative noise. We plan to integrate these two methods to
cope with signals including severe additive and multiplicative noise
simultaneously.
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