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ABSTRACT
We investigate the use of the Riemannian optimization method
over the ag manifold in subspace ICA problems such as in-
dependent subspace analysis (ISA) and complex ICA. In the
ISA experiment, we use the Riemannian approach over the
ag manifold together with an MCMC method to overcome

the problem of local minima of the ISA cost function. Ex-
periments demonstrate the effectiveness of both Riemannian
methods – simple geodesic gradient descent and hybrid geo-
desic gradient descent, compared with the ordinary gradient
method.

Index Terms— Independent subspace analysis, complex
ICA, natural gradient, geodesic, ag manifolds, Riemannian
optimization method

1. INTRODUCTION

Several signal processing tasks, such as those related to in-
dependent component analysis (ICA), can be approached by
optimization over a manifold. Examples of such manifolds in-
clude the orthogonal group O(n), corresponding to the set of
orthonormal n×n matrices, the Stiefel manifold St(n, p ; R),
corresponding to the set of orthonormal n× p matrices,{

W = (w1, . . . , wp) ∈ R
n×p|W�W = Ip, n ≥ p

}
,

and the Grassmann manifold Gr(n, p ; R) of unoriented p-
planes, corresponding to the subspaces spanned by n× p full
rank matrices. Stiefel manifolds have been used in ICA and
PCA in the case where the number of the extracted compo-
nents is less than the number of the mixed signals [8], while
Grassmann manifolds have been utilized for invariant sub-
space computation and subspace tracking [1].

One-unit ICA extracts one independent component at a
time, while ordinary ICA extracts several components simul-
taneously by optimization over the Stiefel manifold. A sin-
gle subspace can be represented as a point on the Grassmann
manifold, which can be used for subspace analysis. The ques-
tion then arises: what manifold will be necessary for extract-
ing several subspaces simultaneously? This leads us to the
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concept of the ag manifold, which is the manifold consist-
ing of orthogonal subspaces. This is closely related to the
Stiefel manifold, and include the Grassmannian manifold as
a special case.

We extend the Riemannian optimization method to the
ag manifold by deriving the formulas for the natural gra-

dient and geodesics on the manifold. We show how the ag
manifold method can be applied to subspace ICA problems
such as independent subspace analysis [5] and complex ICA.

We show that we can replace an optimization over the
complex Stiefel manifold St(n, p, C) of n × p complex uni-
tary matrices (n ≥ p) with an optimization over the real gen-
eralized ag manifold of p 2-dimensional subspaces in R

2n.
Thus, for example, the complex ICA problem of separating p
complex independent sources from a sequence of n > p com-
plex observations can also be tackled using a generalized ag
manifold.

We also consider the problem of local minima in ISA
and propose a hybrid geodesic gradient-MCMC method to
tackle the problem. This algorithm takes geodesic gradient
descent steps in the ag manifold interleaved with random in-
terchanges of basis vectors between subspaces. These swaps
prevent the system from becoming trapped in local minima
of the ISA cost function, while the Riemannian optimization
method accelerates convergence between swaps.

2. FLAG MANIFOLD

Manifolds that frequently arise from signal processing tasks
are Lie groups, and homogeneous spaces of Lie groups. A
homogeneous space M is de ned to be a manifold on which
a Lie group G acts transitively, and it is expressed as the quo-
tient space of G by its isotropy subgroup H: G/H , where
an isotropy subgroup H of p ∈ M consist of the stabiliz-
ers of a point p ∈ M : H = {x ∈ G|x · p = p}. It is also
worth mentioning that G is a ber bundle over G/H whose
ber is isomorphic to H . The formula for geodesics over the
ag manifold is derived by regarding the Stiefel manifold as a
ber bundle over the ag manifold. Previous use of homoge-

neous spaces has mainly concentrated on the Stiefel manifold
St(n, p ;R), which is is diffeomorphic to O(n)/O(n− p) and
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the Grassmann manifold Gr(n, p ;R), which is diffeomorphic
to O(n)/O(p)×O(n− p).

Extending the concept of the Grassmann manifold, we
introduce a new class of manifold – the ag manifold [6].
Given an ordered sequence (n1, . . . , nr) of nonnegative inte-
gers with n1+· · ·+nr ≤ n, the ag manifold Fl(n1, n2, . . . , nr)
is de ned to be the set of sequence of vector spaces V1 ⊂
· · · ⊂ Vr ⊂ R

n with dim Vi = n1 + · · ·+ ni, i = 1, 2, . . . , r.
Fl(n1, n2, · · · , nr) is a smooth, connected, compact mani-
fold. We need a different expression of the ag manifold to
tackle the subspace ICA problems; we consider the set of the
orthogonal direct sum of the vector spaces V

V = V1 ⊕ V2 ⊕ · · · ⊕ Vr ⊂ R
n,

where dimV =
∑r

i=1 di = p ≤ n. With the mapping Vi �→⊕i
j=1 Vj we can see that the set of all V forms a manifold dif-

feomorphic to the original de nition so this is also a ag man-
ifold, which we denote by Fl(n,d), where d = (d1, . . . , dr).
We represent a point on this manifold by a n × p orthogonal
matrix W , i.e. W�W = Ip, which is decomposed as

W = [W1, W2, . . . , Wr], Wi = (wi
1, w

i
2, . . . , w

i
di

),

where wi
k ∈ R

n, k = 1, . . . , di for some i, form the orthog-
onal basis of Vi. The orthogonal group O(n) acts transitively
on the ag manifold Fl(n,d) by matrix multiplication:

O(n)× Fl(n,d) 	 (R, W ) �→ RW ∈ Fl(n,d).

It is easily seen that the isotropy subgroup of O(n) at W is:

[W, W⊥]diag[R1, R2, . . . , Rr, Rr+1][W, W⊥]�,

where Rk ∈ O(dk), (1 ≤ k ≤ r), Rr+1 ∈ O(n−p), and W⊥
is an arbitrary n×(n−p) matrix satisfying [W, W⊥] ∈ O(n).
Therefore

Fl(n,d ; R) ∼= O(n)/O(d1)× · · ·×O(dr)×O(n− p). (1)

Fl(n,d ; R) is locally isomorphic 1 to St(n, p ; R) as a homo-
geneous space when all di (1 ≤ i ≤ r) = 1, and it reduces to
a Grassmann manifold if r = 1. It may well be said that the
ag manifold is a generalization of the Stiefel and Grassmann

manifolds in this sense.
We can obtain the Riemannian optimization method over

a manifold by adapting ordinary optimization methods over
the Euclidean space to the manifold: rst the updated direc-
tion is replaced by the Riemannian counterpart, which is geo-
metric in the sense that it does not depend on parametrizations
of the manifold; second, the current point is updated to the
next along a geodesic on the manifold, thus updated points
always stay on the manifold, which guarantees the stability
against the deviation from the manifold:

Wk+1 = ϕM (Wk,− gradW f(Wk), η), (2)

1A homogeneous space G/H is locally isomorphic to G′/H′ when the
Lie algebras of G, H are locally isomorphic to G′, H′ respectively.

where ϕM (W, V, t) denotes the equation of a geodesic over
manifold M starting from w ∈ M in the direction of V ∈
TwM such that ϕM (W, V, 0) = W, ϕ′M (W, V, 0) = V . We
derived in [8] the equation of a geodesic on a ag manifold
with respect to the normal metric

g
Fl(n,d;R)
W (V1, V2) = trV �1 (I − 1

2WW�)V2,

where V1, V2 ∈ TW Fl(n,d ; R) :

ϕFl(n,d;R)(W, V, t) = exp(t(DW� −WD�))W,

where D = (I − 1
2WW�)V . The natural gradient V of a

function f on Fl(n,d ; R) at W with respect to gFl(n,d;R) is:

Vi = Xi − (WiWi
�Xi +

∑
j �=i WjX

�
j Wi),

where V = (V1, . . . , Vr).

3. COMPLEX ICA

We illustrate how a special class of optimization problems
over the complex Stiefel manifold are transformed to opti-
mization problems over the ag manifold, thereby making
the Riemannian optimization method over the ag manifold
applicable to the complex ICA problem.

Let us consider an optimization problem over the complex
Stiefel manifold:

F : St(n, p ; C) → R,

where St(n, p ; C) = {W = (w1, . . . , wp) = W� + iW� ∈
C

n×p|WHW = Ip} (H denotes the Hermitian transpose op-
erator). We assume F is invariant under the transformation

W = (w1, . . . , wp) �→
(
eiθ1w1, . . . , e

iθpwp

)
, (3)

which is satis ed by cost functions of signal processing tasks
including complex ICA.

Because the cost function F is real-valued, St(n, p ; C)
should be regarded as a real manifold rather than a complex
manifold, for which we embed St(n, p ; C) into R

2n×2p by
the following map:

τ : W =
(
w�1 + iw�1 , . . . , w�p + iw�p

) �→ W̃

=
(

w�1 −w�1 w�2 −w�2 · · · w�p −w�p
w�1 w�1 w�2 w�2 · · · w�p w�p

)
. (4)

It turns out that the embedded manifold N = τ(St(n, p ; C))
coincides with St(2n, 2p ; R) ∩ T, where T = τ(Cn×p) is a
subspace in R

2n×2p. Thus minimizing F over St(n, p ; C)
is transformed to minimizing f over N , where f(W̃ ) :=
F (W ).

Furthermore, the assumption of F gives N an additional
structure. Since the transformation on St(n, p ;C) (3) induces
the following transformation on N :

W̃ �→ W̃diag(R(θ1), R(θ2), · · · , R(θp)), (5)
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where R(θi) =
(

cos θi − sin θi

sin θi cos θi

)
, the function f is also invari-

ant under the transformation (5). Therefore, f can be inter-
preted as a function over a submanifold of the ag manifold2:
N ′ = Fl(2n,2 ; R) ∩ T , where 2 = (2, . . . , 2).

In fact, N ′ is a totally geodesic submanifold of Fl(2n,2 ;
R), that is, a geodesic on Fl(2n,2 ; R) emanating from W̃ ∈
N ′ in the direction of Ṽ ∈ TW̃ N ′ is always contained in N ′.
This allows us to consider just Fl(2n,2 ;R) instead of its sub-
manifold N ′. To summarize, minimizing F over St(n, p ; C)
can be solved by minimizing the function f over the submani-
fold N ′ of Fl(2n,2;R); to minimize f on N ′, we have only to
apply the Riemannian optimization method for Fl(2n,2 ; R)
to f .

To explore the behavior of the Riemannian geodesic gra-
dient descent method on the complex Stiefel manifold, we
performed a numerical complex ICA experiment. Let us as-
sume we are given 9 signals x ∈ C

9 (Fig. 1(b)) which are
complex-valued instantaneous linear mixture of two indepen-
dent QAM16 signals, two QAM4 signals, two PSK8 signals,
and three complex-valued Gaussian noise signals. We assume
we know in advance the number of noise signals. The task of
complex ICA under this assumption is to recover only non-
noise signals y = (y1, . . . , y4)� so that y = W�x. As a
preprocessing stage, we rst center the data and then whiten
it by SVD. Thus, n×p demixing matrix W can be regarded as
a point on the complex Stiefel manifold St(n, p ; C), namely
WHW = Ip. As an objective function, we use a kurtosis-like
higher-order statistics: F (W ) =

∑4
i=1 E

[||yi(t)||4
]
. Then

by minimizing F (W ) over St(n, p ; C) we can solve the task.
We compared two algorithms. One is the Riemannian op-

timization method: W̃k+1=ϕFl(2n,2;R)(W̃k,− gradW̃k
f(W̃k)),

and another is the standard gradient descent method followed
by projection: Ws+1 = pro(Ws − μs

∂f

∂W s
), where ∂f

∂W s

denotes ∂f
∂W�

+ i ∂f
∂W�

, and pro means the projection onto

St(n, p ; C) by complex SVD. Both gradW̃k
f(W̃k) and ∂f

∂W s

are computed by substituting ∂||yi||4
∂w�

i

= 2||yi||2(y∗i x + yix
∗)

and ∂||yi||4
∂w�

i

= 2i||yi||2(y∗i x − yix
∗). Recall that we map

St(n, p;C) to Fl(2n,2;R) and update the matrices on Fl(2n,2;
R) using the correspondence between W and W̃ (4). After
W̃ converges to W̃∞, W̃∞ is pulled back to St(n, p ; C) to
give a demixing matrix W∞. The learning constant ηk, μs

was chosen at each iteration based on the Armijo rule [10].
The separation result is shown in Fig. 1(c). The constella-
tions of the source signals were recovered up to phase shifts.
Both algorithms were tested for 100 trials. On each trial, a
random nonsingular matrix was used to generate the data; a
random unitary matrix was chosen as an initial demixing ma-
trix; we iterated for 200 steps. The plots of Fig. 1(d) show

2Strictly speaking Fl(2n,2 ; R) should be replaced with
SO(2n)/SO(2) × . . . × SO(2) × SO(2n − 2p) – the universal
cover of Fl(2n,2 ; R), yet both are locally isomorphic to each other as a
homogeneous space, and we use Fl(2n,2 ; R) by abuse of notation.
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Fig. 1. Complex ICA experiment

the average behavior of these two algorithms over 100 trials.
We observed that the Riemannian optimization method de-
creased the cost more rapidly than the standard gradient de-
scent method followed by projection, particularly in the early
stages of learning .

4. ISA AND SUBSPACE IDENTIFICATION

In this section we examine the issue of local minima in ISA
and the use of Markov chain Monte Carlo methods as a pos-
sible solution. These local minima are best observed in arti-
cial problems where the correct solution is known and sub-

optimal solutions easily detected. Hence, the experiments de-
scribed here were conducted using data drawn from indepen-
dent subspaces with spherically symmetric multivariate Stu-
dent’s t distributions. The particular choice of the multivariate
t distribution is convenient because it is easy to sample from
and analytically tractable. The degrees-of-freedom parameter
was set to 3, producing a moderately heavy-tailed distribu-
tion.

A maximum-likelihood (ML) estimator for the ISA sys-
tem was constructed using the multivariate Student’s t distri-
bution as the prior within each subspace and the (negative)
log-likelihood of the resulting model as the cost function; this
was minimized using the geodesic gradient descent method.

The algorithm was tested in multiple runs on a number of
12 dimensional problems composed of, respectively, 2, 3, 4,
and 6 dimensional subspaces. For each run, a random sam-
ple was drawn from the source distribution, the mixing matrix
set to the identity, and the algorithm initialized with a random
orthogonal matrix. The correct product of multivariate Stu-
dent’s t distributions was used as the prior; that is, the number
and dimensionality of the subspaces was correct in each run.
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Fig. 2. (a) Example of a sub-optimal basis matrix reached by
gradient descent in a problem with 3 subspaces of dimension
4 (white=zero, black=±1). (b) Distribution of nal Amari er-
ror over 100 runs of deterministic gradient descent (black) and
500 runs of the MCMC-gradient hybrid method (grey). (c)
Evolution of cost function for multiple runs of deterministic
(black lines) and MCMC (grey lines) algorithms in a problem
with 3 × 4-dimensional subspaces.

It was observed that in many cases, the system would be-
come stuck at a non-optimal, non-subspace-separating solu-
tion, an example of which is shown in g. 2(a). In these
cases, the output components are mixtures of sources from
different source subspaces.

One solution to this problem is to allow the system to
swap basis vectors at random with a probability related to
the resulting change in the likelihood. Speci cally, we use
a Metropolis-Hastings methodology: a swap is proposed by
selecting two columns of the basis matrix at random; this is
accepted unconditionally if the likelihood is increased, and
with probability e−β(t)ΔL otherwise, where ΔL is the de-
crease in the likelihood and β(t) is a time-varying inverse
temperature parameter. Since we are aiming for a ML solu-
tion, the temperature is gradually decreased as the algorithm
progresses, that is β is increased linearly from 20 to 60 in 200
steps. These MCMC updates to the basis matrix are inter-
spersed with geodesic gradient descent steps, which quickly
drive the system to a local minimum in between swaps. The
gradient updates are disabled once the change in the likeli-
hood drops below a small threshold (10−8 in these experi-
ments), and then re-enabled as soon as a swap occurs. This
reduces the amount of computation expended on relatively in-
effectual gradient steps, and explains why some of the traces
in g. 2(c) terminate at less than 200 iterations: in these cases,

less than 200 gradient steps were required to reach the correct
solution.

The results are summarized in g. 2(b), which shows that
the hybrid geodesic gradient-MCMC algorithm is more likely
to reach the correct solution to the problem than the purely
deterministic gradient method.

5. CONCLUSIONS

We have demonstrated that the ag manifold is useful for
tackling subspace ICA problems. The aim of this paper was
not to pursue the best learning algorithm for a particular sub-
space ICA problem, rather the emphasis was to illustrate how
the ag manifold naturally arises from the subspace ICA prob-
lems, and how we can exploit the geometric structures of the
ag manifold to modify existing optimization algorithms to

be adapted to these problems. Though we have concentrated
on the gradient descent method in this paper, other optimiza-
tion methods such as the xed point method could also be
formulated over the ag manifold.
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