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ABSTRACT
DNA microarrays provide a huge amount of data and require
therefore dimensionality reduction methods to extract mean-
ingful biological information. Independent Component Anal-
ysis (ICA) was proposed by several authors as an interesting
means. Unfortunately, experimental data are usually of poor
quality because of noise, outliers and lack of samples. Ro-
bustness to these hurdles will thus be a key feature for an ICA
algorithm. This paper identi es a robust contrast function and
proposes a new ICA algorithm.

Index Terms— Independent Component Analysis (ICA),
optimization onmatrixmanifolds, RADICAL algorithm, steepest-
descent on the orthogonal group, gene expression data.

1. INTRODUCTION

TheDNAmicroarray technology is intensively used by biomed-
ical researchers for a systematic estimation of gene expres-
sion levels. Gene expression denotes the relevance of a spe-
ci c gene for the biological functions to be ful lled within the
cell. Microarrays typically provide expression levels for sev-
eral thousands of genes over a few hundreds of experiments.
An important challenge is to extract some biological insight
from these large databases. For more detail about microarrays
and their analysis we refer to [1] and references therein.

Several authors have proposed Independent Component
Analysis (ICA) as an interesting means to extract informa-
tion from gene expression data [2, 3, 4]. The motivation be-
hind this idea lies in the following intuition: gene expression
results from several biological processes that take place in-
dependently. Each biological function relies on a subset of
genes that are activated or inhibited and de nes a so-called
expression mode. These expression modes are expressed ac-
cording to the biological tasks to complete within the cell.
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The latter are assumed to be independent. Gene expression
is usually described as a linear function of the expression
modes. The linear model is assumed for simplicity, but the
application of ICA to gene expressions in yeast corroborates
this model [2].

Let us de ne the gene expression matrix X such that its
element (i, j) corresponds to the expression level of gene i in
the jth experiment. X is thus a n × N matrix, where n is
the number of analyzed genes and N is the number of exper-
iments. The different experiments correspond, e.g., to differ-
ent patients, tissues or environmental conditions. Note that n
is usually much larger thanN . ICA performs an approximate
decomposition of the gene expression matrix into two smaller
matrices A and S that are respectively n× p and p×N with
p < N , i.e.,

X ≈ AS. (1)
The matrices A and S are selected to minimize the error be-
tween X and AS and to minimize a measure of dependence
between the rows of S. The columns of matrix A de ne the
expression modes. The element (i, j) of matrix S speci es
the activity of the ith expression mode in the jth experiment.
Since the expression modes are assumed to be involved in-
dependently, the lines of S may be interpreted as samples of
independent sources.

Unfortunately, classical ICA algorithms are usually not
well adapted to gene expression. These data present a huge
number of observations while only few samples are available.
They are furthermore highly subjected to noise and outliers
(entries in the dataset that do not have any biological sense
because of failures during the experimental process). The ro-
bustness of the ICA algorithm to these hurdles is an essential
issue for the analysis of gene expression data.

Most ICA methods proceed by searching for a demixing
matrix W such that the estimated sources Z = WT X are
as independent as possible. Various contrast functions have
been proposed that provide a quantitative measure of depen-
dence between sampled signals. These contrasts are nonneg-
ative and go to zero for statistically independent signals as the
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number of samples go to in nity. Hence, each ICA method
consists in the minimization of a particular contrast by some
optimization algorithm.

This work investigates in detail the measure of statisti-
cal independence proposed in the RADICAL algorithm [5].
This measure is based on an accurate and computationally
ef cient approximation of the mutual information by using
spacings estimates of the differential entropy. It seems ro-
bust to the lack of samples as well as to noise and outliers.
A gradient-descent algorithm based on that contrast function
is next derived and compared to classical ICA algorithms on
benchmark simulations.

This paper is organized as follows. In Section 2 the cost
function of the RADICAL algorithm is recalled and its robust-
ness is illustrated. In Section 3 a gradient-descent algorithm
based on that cost function is derived on the orthogonal group.
This algorithm is applied on simulated gene expression data
in Section 4. The paper ends with conclusions in Section 5.

2. THE RADICAL CONTRAST

Like many measures of statistical independence, the RADI-
CAL contrast [5] is derived from the mutual information, i.e.,
the Kullback-Leibler divergence between the joint distribu-
tion and the product of the marginal distributions,

J(Z) =

∫
p(z1, . . . , zn) log

p(z1, . . . , zn)

p(z1) . . . p(zn)
dz1 . . . dzn,

where Z = (z1, . . . , zn)T are the estimated sources. The
mutual information can be expressed in terms of differential
entropies as follows,

J(Z) =

n∑
i=1

H(zi)−H(z1, . . . , zn).

After introduction of the demixingmodelZ = WT X , a func-
tion de ned over the space of the demixing matrices is ob-
tained,

J(W ) =
n∑

i=1

H(eT
i WT X)− log(|W |)−H(x1, . . . , xn),

(2)
where ei is the ith basis vector. The dif culty of function
(2) lies in the evaluation of the differential entropies for one-
dimensional variables. An ef cient estimator of these quan-
tities was derived by considering order statistics [5]. Given a
one-dimensional variable z de ned by its samples, the order
statistics of z is the set of samples {z1, . . . , zN} rearranged
in non-decreasing order, i.e., z1 ≤ . . . ≤ zN . The differential
entropy of a one-dimensional variable z de ned by its order
statistics {z1, . . . , zN} can be estimated by

Ĥ(z) =
1

N −m

N−m∑
j=1

log

(
N + 1

m
(z(j+m) − z(j))

)
, (3)

where m is typically set to
√

N . The RADICAL contrast is
actually the function (2) where the differential entropies are
evaluated with the estimator (3),

JRADICAL(W ) =

n∑
i=1

Ĥ(i)(W )− log(|W |), (4)

with Ĥ(i)(W ) = Ĥ(eT
i WT X).

Figure 1 gives a rough idea of the shape of the RADICAL
contrast by representing its evolution along geodesic curves
on the orthogonal group,

On = {W ∈ R
n×n : WT W = In}, (5)

for several benchmark problems. Each of them considers a
data set with an important number of observations (n = 15)
but with rather few samples available (N=100). These ob-
servations result from a mixture of 15 independent sources
and can be subjected to noise and outliers. Table 1 describes
each problem in more detail. The plots on the left part of
Figure 1 illustrate directly the contrast (4), while an empiri-
cal smoothing process was used for the plots on the right part.
This smoothing process simply expands the dataset with noisy
replicates of the original data [5]. The origin of each plot cor-
responds to the solution of the ICA problem.
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Fig. 1. Evolution of the RADICAL contrast along geodesics
of the orthogonal group for six benchmark problems.
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Noise Outliers Smoothing
a ✕ ✕ ✕
b ✕ ✕ ✓
c ✓ ✕ ✕
d ✓ ✕ ✓
e ✕ ✓ ✕
f ✕ ✓ ✓

Table 1. Con guration of the benchmark problems consid-
ered on Figure 1.

Figure 1 highlights some important features of the RAD-
ICAL contrast. First of all, the global minimum stays nearly
unaffected by the presence of noise and outliers as well as
by the few number of samples available. This illustrates the
high robustness of the RADICAL contrast. Next, the smooth-
ing method appears to be very ef cient and useful for noisy
datasets. Finally, the RADICAL contrast seems to be a very
hilly function and is likely to present many local minima,
which complicates the optimization process.

Figure 2 illustrates the favorable robustness of the RADI-
CAL contrast with respect to outliers by applying several ICA
algorithms on a simple benchmark problem. The abscissa in-
dicates the proportion of entries in the dataset that are cor-
rupted. α measures the quality of the identi cation of the
independent sources. A value close to zero stands for a good
performance. ICA algorithms based on the RADICAL con-
trast, i.e., the gradient-descent algorithm introduced in Sec-
tion 3 as well as the original implementation of RADICAL
[5], tolerate up to 1.5% of corrupted values in the dataset,
while classical algorithms such as FastICA [6] and JADE [7]
collapse as soon as there are outliers.
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Fig. 2. Evolution of the performance of some ICA algorithms
with the amount of outliers (n=4,N=200).

3. A GRADIENT-DESCENT ALGORITHM

Each ICA algorithm consists in the minimization of a par-
ticular contrast by some optimization algorithm. Since the
contrast is a function de ned over the space of the demixing
matrices, the search space of the optimization problem is a
matrix manifold. Because of the inherent scale symmetry of
ICA, some constraints on the entries of the demixing matrix
have to be added to get an ef cient optimization. In particular,
the columns of the demixing matrix should have a unit-norm.
Most often, the data X is prewhitened and the demixing ma-
trix is restricted to be orthogonal. Hence, ICA is a direct ap-
plication of the theory of optimization over nonlinear matrix
manifolds [8].

In its original implementation, the RADICAL contrast is
optimized by means of Jacobi rotations [5]. Only one param-
eter is varying at each iteration and global minimization over
that parameter is accomplished by exhaustive search.

This section is dedicated to the derivation of a gradient-
descent algorithm over the orthogonal group (5). Generaliza-
tion to non-orthogonal manifolds, e.g., the oblique manifold
[9], will be the topic of future research. It should be rst
noted that, because of the rearranging process required by the
order statistics, the RADICAL contrast function is only piece-
wise differentiable. Nevertheless, the evaluation of an analyt-
ical expression to the gradient of the estimator (3) is rather
straightforward. All derivatives are performed in the embed-
ding Euclidian spaceR

n×n, while the gradient is obtained af-
ter projection onto the tangent space to the orthogonal group,

gradĤ(i)(W ) = PTW
gradH̃(i)(W ),

where H̃(i) is the extension of Ĥ(i) over R
n×n, i.e., H̃(i) =

Ĥ(i)|On
, and PTW

(Z) is the projection operator, namely, in
case of the orthogonal group,PTW

(Z) = 1
2W (WT Z−ZT W ).

The evaluation of the gradient in the embedding manifold is
performed by means of the identity,

DH̃(i)(W )[Z] = 〈gradH̃(i)(W ), Z〉,
with the metric 〈Z1, Z2〉 = tr(ZT

1 Z2). The directional deriva-
tive is given by

DH̃(i)(W )[Z] =

tr

⎛
⎝ 1

N −m

N−m∑
j=1

ei(x
(kj+m) − x(kj))T

eT
i WT (x(kj+m) − x(kj))

Z

⎞
⎠ ,

where x(k) denotes the kth column of the data matrixX . The
indices kj+m and kj point to the samples of the estimated
source zi, which are respectively at positions j + m and j in
the order statistics of zi.1

1More details about the calculations can be found in a forthcoming ex-
tended version of the present paper.
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We propose a gradient-descent algorithm based on an ex-
act line-search method, i.e., the algorithm is searching at each
iteration for the minimum in the direction opposed to the gra-
dient. This one-dimensional optimization is performed by
means of a golden section search [10]. The gradient-descent
algorithm inherits of all the local convergence properties of
line-search optimization methods [8], but it is unable to per-
form the global optimization of the RADICAL contrast. Nev-
ertheless, it can be extended to global optimization by adding
a stochastic component to the gradient. This is the topic of
ongoing research.

4. SIMULATION RESULTS

The following simulations are based on a benchmark setup
that simulates the analysis of gene expression data. Expres-
sion modes are generated arti cially by building a vector of
7114 genes with entries around one for the genes that are part
of the expression mode and entries close to zero otherwise.
An arti cial gene expression database of 7114 genes and 200
experiments is then obtained by multiplying the matrix of
the expression modes A with the matrix of the independent
sources S, according to equation (1). Some ICA algorithms
are applied on this dataset and the quality of the identi cation
of the expression modes is evaluated afterwards by a measure
α, which stands for a good performance once it is close to
zero. All algorithms are identically initialized with a matrix
that is close to the solution of the ICA problem. Hence, Fig-
ure 3 analyzes the local behavior of the ICA algorithms for
several problem setups.
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Fig. 3. Performance of the ICA algorithms on a gene expres-
sion benchmark involving an increasing number of expression
modes.

This gure indicates that algorithms based on the RADI-
CAL contrast seem well-adapted to the analysis of gene ex-
pression data. Furthermore, the new gradient-descent algo-
rithm appears to be more accurate than the original implemen-
tation of RADICAL. Its global performance is not addressed
in the present paper.

5. CONCLUSION

ICA is expected to become a method of choice in many appli-
cation areas, and in particular for the analysis of gene expres-
sion data. Unfortunately, current ICA algorithms are usually
not well adapted for experimental datasets. Improvement in
term of robustness to lack of samples, noise and outliers is an
important issue for future ICA approaches. This paper sets a
rst step in that direction.
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