
GENERALISED FASTICA FOR INDEPENDENT SUBSPACE ANALYSIS

Hao Shen and Knut Hüper
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ABSTRACT

Independent Subspace Analysis (ISA) was developed as an
extension of Independent Component Analysis (ICA) when
statistical independences are assumed to exist between groups
of components rather than between individual components.
Due to the superiority of FastICA against other linear ICA
algorithms, an intuitive analogy, the so-called FastISA algo-
rithm, has been proposed to solve the problem of ISA. Experi-
mental evidences so far have shown the capability of FastISA,
regardless of any independence criterion. Since standard Fas-
tICA can be viewed as a special case of an approximate New-
ton ICA method and moreover can be generalised as a scalar
shifted xed point algorithm, in this work, we propose two
new classes of ISA algorithms, an approximate Newton-like
ISA method and a matrix shifted xed point ISA algorithm
on the Graßmann manifold. As an aside, FastISA is a special
case in the class of matrix shifted xed point ISA algorithms.
Performances of the proposed algorithms are investigated by
numerical experiments.

Index Terms— Independent Subspace Analysis (ISA),
Graßmannmanifold, Newton-likemethod onmanifolds, Fast-
ICA, FastISA.

1. INTRODUCTION

In the past two decades, Independent Component Analysis
(ICA) [1] has attracted enormous attention from various com-
munities. Many ef cient ICA algorithms have been proposed
and used in various application areas. However, the applica-
tion of many ICA algorithms is often limited since the stan-
dard ICA model requires mutual statistical independence be-
tween all components. In large scale ICA problems, gener-
ally, there are often groups of independent components which
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have statistical dependences within one group, and are sta-
tistically independent from any component in other groups.
Such problems can be tackled by a technique now referred to
as Independent Subspace Analysis (ISA) [2]. The standard
ICA problem can just be considered as a special case of ISA,
which extracts one-dimensional independent subspaces.
The FastICA algorithm is one prominent ICA algorithm

proposed by the Finnish school [3]. It computes one indepen-
dent component at a time. An intuitive analogy, the so-called
FastISA algorithm, has been proposed to solve the problem
of ISA [4]. Regardless of the choice of independence crite-
rion, FastISA has shown its capacity of extracting indepen-
dent subspaces. Recent work by the present authors show
that standard FastICA can essentially be regarded as an algo-
rithm on real projective space, which is a special case of a
Graßmann manifold, see [5] and references therein for more
details. Simultaneously, it has been shown that FastICA can
be viewed as a special case of an approximate Newton ICA
method, which eliminates the sign ipping behavior of the
original FastICA, and furthermore has been generalised as a
scalar shifted xed point algorithm.
In this work, we study the ISA problem to compute only

one independent subspace. Two classes of ISA algorithms liv-
ing on the Graßmann manifold are proposed: (i) an approxi-
mate Newton-like ISA method, and (ii) a matrix shifted xed
point ISA algorithm. It turns out that FastISA is just a special
case in the class of matrix shifted xed point ISA algorithms.
The performance of the proposed algorithms is investigated
by numerical experiments.

2. APPROXIMATE NEWTON-LIKE ISA METHODS

Recall the demixing linear ISA model, formulated by the re-
lation Y = X�W , whereW = [w1, . . . , wn] ∈ R

m×n is the
whitened observation, the matrixX ∈ R

m×p is the demixing
matrix, and Y ∈ R

p×n represents a group of p signals, see [2].
If a demixing matrix X∗ ∈ R

m×p with rkX∗ = p extracts a
statistical independent group of p signals, then a different ma-
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trixX ∈ R
m×p with spanX = spanX∗ represents the same

independent group. The set of all p-dimensional linear sub-
spaces ofRm is de ned as the Graßmann manifoldGr(p, m).
Instead of representingGr(p, m) as a homogeneous space

[6, 7], we identify Gr(p, m) here with the set of rank p sym-
metric projection operators on R

m [8], i.e.,

Gr(p, m) :={P ∈ R
m×m|P = P�, P 2 = P, tr P = p}. (1)

LetSO(m) :=
{
Θ ∈ R

m×m|Θ�Θ = 1, det(Θ) = 1
}
denote

the special orthogonal group. One can represent any point
P ∈ Gr(p, m) by P = Θ

[
Ip 0
0 0

]
Θ� with a suitable Θ ∈

SO(m). Now let us generalise the cost function for ISA al-
ready used in [2] as follows,

F : Gr(p, m) → R, F (P ) := 1
2Ei[G(w�

i Pwi)], (2)

where G : R → R is a smooth function and Ei[·] denotes the
empirical mean over the index i. For the sake of simplicity, in
the sequel, we will omit the index i. Following [7, 9], we will
derive an approximate Newton-like ISA method onGr(p, m)
by optimising the cost function (2).
Recall that a smooth local parameterisation of the Graß-

mann manifold around P ∈ Gr(p, m) is as follows

μP : R
(m−p)×p → Gr(p, m),

μP (Z) := Θexp
[

0 −Z�

Z 0

][
Ip 0
0 0

]
exp

[
0 Z�

−Z 0

]
Θ�,

(3)

where Θ ∈ SO(m) and P = μP (0) = Θ
[

Ip 0
0 0

]
Θ� ∈

Gr(p, m). After composing F with μP , the rst derivative
of F ◦ μP at 0 can be computed as follows,

d
d ε

(F ◦ μP ) (εZ)
∣∣
ε=0

= trZ�K21, (4)

whereK11 ∈ R
p×p,K21 ∈ R

(m−p)×p and[
K11 K�

21

K21 K22

]
:= E[G′(w�Pw)Θ�ww�Θ]. (5)

Here the termK21 is a function in P , i.e.,K21 : Gr(p, m) →
R

(m−p)×p. Thus to characterise the critical points of F , we
need to study when the expression in (5) vanishes, i.e., when
trZ�K21(P ) = 0. Due to the fact that this critical point
condition depends not only on the function G but also on
the statistical properties of the signals, it is hardly possible
to characterise all critical points of F in detail. Nevertheless,
it can be shown that any correct subspace extraction point
P ∗ ∈ Gr(p, m) is a critical point of F , i.e.,

K21(P
∗) = 0. (6)

It is worthwhile to point out that there might exist more criti-
cal points other than P ∗.
Now we compute the second derivative of F ◦μP at 0 and

evaluate at P = P ∗, i.e.,

d2

d ε2 (F ◦ μP ) (εZ)
∣∣∣
ε=0,P=P∗

= Z�H11(P
∗)Z, (7)

whereH11 : Gr(p, m) → R
p×p with

[
H11 H�

21

H21 H22

]
:=2E[G′′(w�Pw)Θ�ww�Θ]

− E[G′(w�Pw)Θ�ww�Θ]

+ E[G′(w�Pw)w�Pw]Im.

(8)

In the sequel, we make the reasonable assumption that the
evaluation of H11 at P = P ∗ is invertible. By smooth-
ness, this implies that within an open neighbourhood of P ∗,
NP∗ ⊂ Gr(p, m), the evaluation of H11 at a point P ∈ NP∗

is invertible as well. Therefore we suggest to approximate the
Hessian ofF ◦μP at 0 for arbitraryP ∈ NP∗ ⊂ Gr(p, m) us-
ing the expressionH11 as in (8). Note that such approximate
Hessian gives the true Hessian at P ∗.
The approximate Newton direction Z ∈ R

(m−p)×p can
be computed by solving the following linear equation,

Z�H11(P ) = K21(P ). (9)

Thus an approximate Newton-like method for solving ISA
can be summarised as follows

Approximate Newton-Like ISA (ANLISA) algorithm

Step 1: Given an initial matrixΘ0 ∈ SO(m) such that
P0 = Θ0

[
Ip 0
0 0

]
Θ�

0 ∈ Gr(p, m).
Set i = 0,

Step 2: Compute[
K11 K�

21

K21 K22

]
:= E[G′(w�Piw)Θ�

i ww�Θi], and[
H11 H�

21

H21 H22

]
:= 2E[G′′(w�Piw)Θ�

i ww�Θi]

−E[G′(w�Piw)Θ�

i ww�Θi]

+E[G′(w�Piw)w�Piw]Im.

Step 3: Compute the Newton direction Z ∈ R
(m−p)×p by

solving the linear matrix equation
Z�H11(Pi) = K21(Pi),

Step 4: Compute
Θi+1 = Θi exp

[
0 −Z�

Z 0

]
and Pi+1 = μPi

(Z),
Step 5: Set i = i + 1 and goto Step 2.

Again by abusing notations, let us consider the solution Z

of the linear system (9) as a function of P ∈ Gr(p, m), i.e.,
Z : Gr(p, m) → R

(m−p)×p. ANLISA can be then restated
as the smooth and locally well de ned map

η : NP∗ → Gr(p, m), P �→ μP (Z(P )) . (10)

Local convergence properties of the algorithmic map η are
summarised by the following results.

Lemma 1 Consider ANLISA as a map η on Gr(p, m) as in
(10) and let P ∗ ∈ Gr(p, m) be a correct subspace separation
point. Then P ∗ is a xed point of η.

PROOF (SKETCH). Recall the result in equation (6), one gets
Z(P ∗) = 0. The lemma then follows.
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Theorem 1 ANLISA considered as the map η as in (10) is
locally quadratically convergent to a correct subspace sepa-
ration point P ∗ ∈ Gr(p, m).

PROOF (SKETCH). Tedious but direct computations show
that η is locally smooth in the neighbourhood of P ∗ and the
rst derivative of the algorithmic map η

D η(P ) : TP Gr(p, m) → Tη(P )Gr(p, m), (11)

vanishes at a correct subspace extraction pointP ∗∈Gr(p, m).
Thus the result follows.

3. MATRIX SHIFTED FIXED POINT ISA METHODS

It has been shown that FastICA is a scalar shifted version of a
simpler xed point algorithm [10, 5]. In this section we rst
propose a simple xed point ISA algorithm and then develop
a matrix shifted xed point ISA method, which obtains local
quadratic convergence.
Let denote St(p, m) := {X ∈ R

m×m|X�X = Ip} the
Stiefel manifold. We construct a smooth and locally well de-
ned map on St(p, m) as follows

ρ : St(p, m) → St(p, m), X �→ (Ψ(X))Q , (12)

where (Z)Q denotes theQ-factor in theQR-factorisationZ =
(Z)Q(Z)R and

Ψ:St(p, m)→R
m×p, P �→E[G′(w�XX�w)ww�]X. (13)

It can be shown that for any Ω ∈ SO(p),

Ψ(XΩ) = Ψ(X)Ω ⇒ spanΨ(XΩ) = span Ψ(X). (14)

From this we deduce that the map ρ as in (12) is invariant
under basis changes.
Recall the representation P = Θ

[
Ip 0
0 0

]
Θ� ∈ Gr(p, m)

with Θ ∈ SO(m), and X = Θ
[

Ip

0

]
. The map ρ can be

reconsidered as a smooth and locally well de ned map on
Gr(p, m)

ρ̃ : NP∗ → Gr(p, m),

P �→
(
Ψ̃(P )

)
Q

(
Ψ̃(P )

)�

Q
,

(15)

where

Ψ̃ :Gr(p, m)→R
m×p, P �→E[G′(w�Pw)ww�]X. (16)

It can be shown easily that a correct subspace extraction point
P ∗ is a xed point of the algorithmic map ρ̃.
Now we generalise the algorithmic map (15) by means of

a matrix shift, i.e.,

ζ : NP∗ → Gr(p, m),

P �→
(
Ψ̃(P )−XΦ(P )

)
Q

(
Ψ̃(P )−XΦ(P )

)�
Q

,
(17)

where Φ : Gr(p, m) → GL(p) is such that, for any Ω ∈
SO(p)

Φ(XΩ) = Ω�Φ(X)Ω. (18)

Straightforwardly, one comes up with the following result

Lemma 2 Let P ∗ ∈ Gr(p, m) be a correct subspace separa-
tion point. Then P ∗ is a xed point of the map ζ as in (17).

Using the same strategy as developing FastICA as a scalar
shifted xed point method [5], we propose the following shift

Φq(P ) :=2E[G′′(w�Pw)X�ww�X ]+E[G′(w�Pw)]Ip. (19)

A matrix shifted xed point ISA (MS-ISA) algorithm can
then be summarised as follows

Matrix shifted Fixed Point ISA (MS-ISA) algorithm

Step 1: Given an initial matrixΘ0 ∈ SO(m) such that
X0 = Θ0

[
Ip

0

]
and P0 = X0X

�
0 ∈ Gr(p, m).

Set i = 0,
Step 2: Compute

Ψ(Pi) = E[G′(w�Piw)ww�]Xi, and

Φ(Pi) = 2E[G′′(w�Piw)X�

i ww�Xi]

+E[G′(w�Piw)]Ip

Step 3: ComputeXi+1 = (Ψ(Pi) − XiΦ(Pi))Q and
Pi+1 = Xi+1X

�

i+1,
Step 4: Set i = i + 1 and goto Step 2.

Local convergence properties of MS-ISA is studied in the fol-
lowing theorem.

Theorem 2 MS-ISA considered as the map ζ as in (17) is
locally quadratically convergent to a correct subspace sepa-
ration point P ∗ ∈ Gr(p, m).

Due to the space limit of this paper, the proof will be given
in our forthcoming paper. Nevertheless, such result will be
veri ed by numerical evidence in Sec. 4.

Further Generalisations

Finally it can be easily seen that, if one only takes the diago-
nal of the expression Φq(X) as in (19) as a new matrix shift,
i.e., Φd(X) = diag Φq(X), it gives exactly the formulation
of the original FastISA, referred here as MS-ISA-D. Such di-
agonalisation strategy is similar to the situation when gener-
alising Rayleigh Quotient Iteration to St(p, m) or Gr(p, m)
see [11, 6] and references therein. Likewise, by taking the
diagonal of the expression H11 as in (8) as a new approxi-
mate Hessian, one can easily formulate a new approximate
Newton-like method as well, referred here as ANLISA-D. By
the same arguments as above, it can be shown that a correct
subspace extraction point P ∗ ∈ Gr(p, m) is a xed point of
ANLISA-D and MS-ISA-D. Both algorithms are locally lin-
early convergent to P ∗.
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Fig. 1. Local convergence properties of ANLISA, ANLISA-
D, MS-ISA and MS-ISA-D.

4. NUMERICAL EXPERIMENTS

In this section, we investigate performances of the proposed
algorithms by numerical experiments, focusing on conver-
gence properties. An ideal dataset is generated to ensure that
the approximation (8) gives the true Hessian at a critical point
of F corresponding to a correct extraction. Here we specify
the non-linear functionG as follows

G : R → R, G(x) := log(cosh(x)). (20)

The convergences are measured by the Frobenius norm of the
difference between the accumulation point P ∗ ∈ Gr(p, m)
and the current iterate Pk ∈ Gr(p, m), i.e., by ‖Pk − P ∗‖F ,
with P ∗ being the computed subspace extraction point.
We need to point out that due to the nature of source com-

ponents and the choice of G, e.g., as in (20), there might ex-
ist many local optima of F . Thus in this experiment, all al-
gorithms are initialised with the same point, which is close
enough to a correct subspace extraction. Numerical results
in Fig. 1 show that both ANLISA and MS-ISA are locally
quadratically convergent to a correct subspace extraction point
P ∗ ∈ Gr(p, m). While their diagonal counterparts, ANLISA-
D and MS-ISA-D, seem to converge only linearly. It is also
worthwhile to point out that, (i) ANLISA and ANLISA-D are
of similar computational burden as MS-ISA and MS-ISA-D,
respectively; (ii) although ANLISA and MS-ISA require less
iterations than their diagonal counterparts, both are a bit more
computationally expensive.
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